This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194809 #14 Oct 16 2018 11:23:54 %S A194809 0,-2,1,-5,3,-12,7,-25,17,-47,36,-88,69,-155,133,-262,240,-439,415, %T A194809 -717,705,-1142,1165,-1803,1874,-2797,2975,-4276,4632,-6478,7094, %U A194809 -9698,10741,-14355,16059,-21079,23719,-30670,34716,-44243,50315,-63372 %N A194809 Imbalance of the sum of largest parts of all partitions of n. %C A194809 Consider the three-dimensional structure of the shell model of partitions version "tree". Note that only the larges parts > 1 produce the imbalance. Note that every column where is located a largest part contains largest parts of the same size, thesame as a periodic table (see example). For more information see A135010. %F A194809 a(n) = Sum_{k=2..n} (-1)^(k-1)*A138137(k), n >= 2. %e A194809 For n = 6 the illustration of the shell model with 6 shells shows an imbalance of largest parts (see below): %e A194809 ------------------------------------------------------ %e A194809 Partitions Tree Table 1.0 %e A194809 of 6. A194805 A135010 %e A194809 ------------------------------------------------------ %e A194809 6 6 6 . . . . . %e A194809 3+3 3 3 . . 3 . . %e A194809 4+2 4 4 . . . 2 . %e A194809 2+2+2 2 2 . 2 . 2 . %e A194809 5+1 1 5 5 . . . . 1 %e A194809 3+2+1 1 3 3 . . 2 . 1 %e A194809 4+1+1 4 1 4 . . . 1 1 %e A194809 2+2+1+1 2 1 2 . 2 . 1 1 %e A194809 3+1+1+1 1 3 3 . . 1 1 1 %e A194809 2+1+1+1+1 2 1 2 . 1 1 1 1 %e A194809 1+1+1+1+1+1 1 1 1 1 1 1 1 %e A194809 ------------------------------------------------------ %e A194809 The sum of largest parts > 1 on the left hand side is 23 and the sum of largest parts > 1 on the right hand side is 11, so a(6) = -23 + 11 = -12. On the other hand for n = 6 we have that 0 together with the first n-1 terms > 1 of A138137 are 0, 2, 3, 6, 8, 15 so a(6) = 0-2+3-6+8-15 = -12. %Y A194809 Cf. A135010, A138121, A138137, A141285, A194795-A194797, A194805. %K A194809 sign %O A194809 1,2 %A A194809 _Omar E. Pol_, Feb 02 2012