cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194810 Indices k such that A139250(k) = A000979(n).

Original entry on oeis.org

2, 4, 8, 32, 64, 256, 512, 2048, 32768, 2097152, 1073741824, 549755813888, 1125899906842624, 9223372036854775808, 9671406556917033397649408, 39614081257132168796771975168, 633825300114114700748351602688
Offset: 1

Views

Author

Omar E. Pol, Oct 23 2011

Keywords

Comments

Indices k such that the number of toothpicks in the toothpick structure of A139250 after k-th stage equals the n-th Wagstaff prime A000979. All terms of this sequence are powers of 2 (see formulas).
For a picture of the n-th Wagstaff prime as a toothpick structure see the Applegate link "A139250: the movie version", then enter N = a(n) and click "Update", for N = a(n) <= 32768 (due to the resolution of the movie).

Examples

			For n = 5 we have that a(5) = 64, then we can see that the number of toothpicks in the toothpick structure of A139250 after 64 stages is 2731 which coincides with the fifth Wagstaff prime, so we can write A139250(64) = A000979(5) = 2731. See the illustration in the Applegate-Pol-Sloane paper, figure 3: T(64) = 2731 toothpicks.
		

Crossrefs

Programs

  • Mathematica
    2^Reap[Do[If[PrimeQ[1+Sum[2^(2n-1), {n, m}]], Sow[m]], {m, 100}]][[2, 1]] (* Jean-François Alcover, Oct 06 2018 *)

Formula

a(n) = 2^A127936(n) = 2^(floor(A000978(n)/2)) = 2^(ceiling(log_4(A000979(n)))).
A139250(2^n) = A007583(n), n >= 0.
A139250(a(n)) = A000979(n).

Extensions

More terms from Omar E. Pol, Mar 14 2012