cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194812 Square array read by antidiagonals: T(n,k) = number of parts of size k in the last section of the set of partitions of n.

This page as a plain text file.
%I A194812 #19 Oct 23 2024 14:40:18
%S A194812 1,1,0,2,1,0,3,0,0,0,5,2,1,0,0,7,1,0,0,0,0,11,4,1,1,0,0,0,15,3,2,0,0,
%T A194812 0,0,0,22,8,2,1,1,0,0,0,0,30,7,3,1,0,0,0,0,0,0,42,15,6,3,1,1,0,0,0,0,
%U A194812 0,56,15,6,2,1,0,0,0,0,0,0,0,77,27,10
%N A194812 Square array read by antidiagonals: T(n,k) = number of parts of size k in the last section of the set of partitions of n.
%C A194812 It appears that in the column k, starting in row n, the sum of k successive terms is equal to A000041(n-1).
%F A194812 It appears that A000041(n) = Sum_{j=1..k} T(n+j,k), n >= 0, k >= 1.
%e A194812 Array begins:
%e A194812 .  1,  0,  0,  0, 0, 0, 0, 0, 0, 0, 0, 0,...
%e A194812 .  1,  1,  0,  0, 0, 0, 0, 0, 0, 0, 0, 0,...
%e A194812 .  2,  0,  1,  0, 0, 0, 0, 0, 0, 0, 0, 0,...
%e A194812 .  3,  2,  0,  1, 0, 0, 0, 0, 0, 0, 0, 0,...
%e A194812 .  5,  1,  1,  0, 1, 0, 0, 0, 0, 0, 0, 0,...
%e A194812 .  7,  4,  2,  1, 0, 1, 0, 0, 0, 0, 0, 0,...
%e A194812 . 11,  3,  2,  1, 1, 0, 1, 0, 0, 0, 0, 0,...
%e A194812 . 15,  8,  3,  3, 1, 1, 0, 1, 0, 0, 0, 0,...
%e A194812 . 22,  7,  6,  2, 2, 1, 1, 0, 1, 0, 0, 0,...
%e A194812 . 30, 15,  6,  5, 3, 2, 1, 1, 0, 1, 0, 0,...
%e A194812 . 42, 15, 10,  5, 4, 2, 2, 1, 1, 0, 1, 0,...
%e A194812 . 56, 27, 14, 10, 5, 5, 2, 2, 1, 1, 0, 1,...
%e A194812 ...
%e A194812 For n = 7, from the conjecture we have that p(n-1) = p(6) = 11 = 3+8 = 2+3+6 = 1+3+2+5 = 1+1+2+3+4 = 0+1+1+2+2+5, etc. where p(n) = A000041(n).
%Y A194812 Columns 1-4: A000041, A182712, A182713, A182714. Main triangle: A182703.
%Y A194812 Cf. A066633, A135010, A138121, A138137.
%K A194812 nonn,tabl
%O A194812 1,4
%A A194812 _Omar E. Pol_, Feb 04 2012