This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194813 #15 Jun 25 2022 10:00:24 %S A194813 0,0,1,2,2,2,3,4,5,5,5,6,6,6,6,7,8,8,8,9,10,11,11,12,13,13,13,13,14, %T A194813 15,15,15,16,16,16,16,17,18,18,18,19,20,21,21,22,23,23,23,23,24,25,25, %U A194813 25,26,27,28,28,29,30,30,30,31,32,33,33,33,34,34,34,34,35,36,36 %N A194813 Number of integers k in [1,n] such that {n*r + k*r} < {n*r - k*r}, where { } = fractional part and r = (1+sqrt(5))/2 (the golden ratio). %C A194813 A194813 + A194814 = A000027 for n > 0. %e A194813 {4r+1r} = 0.09...; {4r-1r} = 0.85...; %e A194813 {4r+2r} = 0.70...; {4r-2r} = 0.23...; %e A194813 {4r+3r} = 0.32...; {4r-3r} = 0.61...; %e A194813 {4r+4r} = 0.94...; {4r-4r} = 0.00...; %e A194813 so that a(4)=2. %t A194813 r = GoldenRatio; p[x_] := FractionalPart[x]; %t A194813 u[n_, k_] := If[p[n*r + k*r] <= p[n*r - k*r], 1, 0] %t A194813 v[n_, k_] := If[p[n*r + k*r] > p[n*r - k*r], 1, 0] %t A194813 s[n_] := Sum[u[n, k], {k, 1, n}] %t A194813 t[n_] := Sum[v[n, k], {k, 1, n}] %t A194813 Table[s[n], {n, 1, 100}] (* A194813 *) %t A194813 Table[t[n], {n, 1, 100}] (* A194814 *) %Y A194813 Cf. A001622, A194814, A194738. %Y A194813 Partial sums of A327174. %K A194813 nonn %O A194813 1,4 %A A194813 _Clark Kimberling_, Sep 03 2011