This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194814 #6 Mar 30 2012 18:57:44 %S A194814 1,2,2,2,3,4,4,4,4,5,6,6,7,8,9,9,9,10,11,11,11,11,12,12,12,13,14,15, %T A194814 15,15,16,17,17,18,19,20,20,20,21,22,22,22,22,23,23,23,24,25,26,26,26, %U A194814 27,28,28,28,28,29,29,29,30,31,31,31,31,32,33,33,34,35,36,36,36 %N A194814 Number of integers k in [1,n] such that {n*r+k*r} > {n*r-k*r}, where { } = fractional part and r=(1+sqrt(5))/2 (the golden ratio). %C A194814 A194813+A194814=A000027 for n>0. %e A194814 {4r+1r}=0.09...; {4r-1r}=0.85...; %e A194814 {4r+2r}=0.70...; {4r-2r}=0.23...; %e A194814 {4r+3r}=0.32...; {4r-3r}=0.61...; %e A194814 {4r+4r}=0.94...; {4r-4r}=0.00...; %e A194814 so that a(4)=2. %t A194814 r = GoldenRatio; p[x_] := FractionalPart[x]; %t A194814 u[n_, k_] := If[p[n*r + k*r] <= p[n*r - k*r], 1, 0] %t A194814 v[n_, k_] := If[p[n*r + k*r] > p[n*r - k*r], 1, 0] %t A194814 s[n_] := Sum[u[n, k], {k, 1, n}] %t A194814 t[n_] := Sum[v[n, k], {k, 1, n}] %t A194814 Table[s[n], {n, 1, 100}] (* A194813 *) %t A194814 Table[t[n], {n, 1, 100}] (* A194814 *) %Y A194814 Cf. A194813, A194738. %K A194814 nonn %O A194814 1,2 %A A194814 _Clark Kimberling_, Sep 03 2011