A194827 2-adic valuation of the number of n X n Alternating Sign Matrices (A005130(n)).
0, 1, 0, 1, 0, 2, 2, 3, 2, 2, 0, 2, 2, 4, 4, 5, 4, 4, 2, 2, 0, 3, 4, 6, 6, 7, 6, 8, 8, 10, 10, 11, 10, 10, 8, 8, 6, 7, 6, 6, 4, 3, 0, 3, 4, 7, 8, 10, 10, 11, 10, 11, 10, 13, 14, 16, 16, 17, 16, 18, 18, 20, 20, 21, 20, 20, 18, 18, 16, 17, 16, 16, 14, 13, 10, 11, 10, 11, 10, 10
Offset: 1
Links
- Kenny Lau, Table of n, a(n) for n = 1..9999
- Clemens Heuberger and Helmut Prodinger, A precise description of the p-adic valuation of the number of alternating sign matrices, Intl. J. Numb. Th., Vol. 7, No. 1 (2011), pp. 57-69.
Programs
-
Maple
Sp := proc(n,p) add(d,d=convert(n,base,p)) ; end proc: nuA005130 := proc(n,p) add(Sp(n+j,p),j=0..n-1)-add(Sp(3*j+1,p),j=0..n-1) ; %/(p-1) ; end proc: A194827 := proc(n) nuA005130(n,2) ; end proc:
-
Mathematica
s[n_] := DigitCount[n, 2, 1]; a[0] = 0; a[n_] := a[n] = a[n - 1] + s[2*n - 2] + s[2*n - 1] - s[n - 1] - s[3*n - 2]; Array[a, 100] (* Amiram Eldar, Feb 21 2021 *)
-
Python
# a(n) = prod(k=0, n-1, (3k+1)!/(n+k)!) # a(n+1) = prod(k=0, n, (3k+1)!/(n+k+1)!) # a(n+1) = prod(k=0, n, (3k+1)!/(n+k)!) prod(k=0, n, 1/(n+k+1)) # a(n+1)/a(n) = [(3n+1)!/(2n)!] [n!/(2n+1)!] n=10000; N=3*n+1; val=[0]*(N+1); exp=2 while exp <= N: for j in range(exp,N+1,exp): val[j] += 1 exp *= 2 fac_val=[0]*(N+1) for i in range(N): fac_val[i+1] = fac_val[i] + val[i+1] res=0 for i in range(1,n): print(i,res); res += fac_val[3*i+1] + fac_val[i] - fac_val[2*i] - fac_val[2*i+1] # Kenny Lau, Jun 09 2018
Formula
a(n) = a(n-1) + s(2*n-2) + s(2*n-1) - s(n-1) - s(3*n-2), where s(n) = A000120(n). - Amiram Eldar, Feb 21 2021