cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194827 2-adic valuation of the number of n X n Alternating Sign Matrices (A005130(n)).

Original entry on oeis.org

0, 1, 0, 1, 0, 2, 2, 3, 2, 2, 0, 2, 2, 4, 4, 5, 4, 4, 2, 2, 0, 3, 4, 6, 6, 7, 6, 8, 8, 10, 10, 11, 10, 10, 8, 8, 6, 7, 6, 6, 4, 3, 0, 3, 4, 7, 8, 10, 10, 11, 10, 11, 10, 13, 14, 16, 16, 17, 16, 18, 18, 20, 20, 21, 20, 20, 18, 18, 16, 17, 16, 16, 14, 13, 10, 11, 10, 11, 10, 10
Offset: 1

Views

Author

R. J. Mathar, Sep 03 2011

Keywords

Crossrefs

Programs

  • Maple
    Sp := proc(n,p) add(d,d=convert(n,base,p)) ; end proc:
    nuA005130 := proc(n,p) add(Sp(n+j,p),j=0..n-1)-add(Sp(3*j+1,p),j=0..n-1) ; %/(p-1) ; end proc:
    A194827 := proc(n) nuA005130(n,2) ; end proc:
  • Mathematica
    s[n_] := DigitCount[n, 2, 1]; a[0] = 0; a[n_] := a[n] = a[n - 1] + s[2*n - 2] + s[2*n - 1] - s[n - 1] - s[3*n - 2]; Array[a, 100] (* Amiram Eldar, Feb 21 2021 *)
  • Python
    # a(n) = prod(k=0, n-1, (3k+1)!/(n+k)!)
    # a(n+1) = prod(k=0, n, (3k+1)!/(n+k+1)!)
    # a(n+1) = prod(k=0, n, (3k+1)!/(n+k)!) prod(k=0, n, 1/(n+k+1))
    # a(n+1)/a(n) = [(3n+1)!/(2n)!] [n!/(2n+1)!]
    n=10000; N=3*n+1; val=[0]*(N+1); exp=2
    while exp <= N:
        for j in range(exp,N+1,exp): val[j] += 1
        exp *= 2
    fac_val=[0]*(N+1)
    for i in range(N): fac_val[i+1] = fac_val[i] + val[i+1]
    res=0
    for i in range(1,n): print(i,res); res += fac_val[3*i+1] + fac_val[i] - fac_val[2*i] - fac_val[2*i+1]
    # Kenny Lau, Jun 09 2018

Formula

a(n) = A007814(A005130(n)).
a(n) = a(n-1) + s(2*n-2) + s(2*n-1) - s(n-1) - s(3*n-2), where s(n) = A000120(n). - Amiram Eldar, Feb 21 2021