This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194832 #33 Jul 30 2023 02:41:21 %S A194832 1,1,2,3,1,2,3,1,4,2,3,1,4,2,5,3,6,1,4,2,5,3,6,1,4,7,2,5,8,3,6,1,4,7, %T A194832 2,5,8,3,6,1,9,4,7,2,5,8,3,6,1,9,4,7,2,10,5,8,3,11,6,1,9,4,7,2,10,5,8, %U A194832 3,11,6,1,9,4,12,7,2,10,5,8,3,11,6,1,9,4,12,7,2,10,5,13,8,3,11 %N A194832 Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r= -tau = -(1+sqrt(5))/2. %C A194832 Every irrational number r generates a triangular array in the manner exemplified here. Taken as a sequence, the numbers comprise a fractal sequence f which induces a second (rectangular) array whose n-th row gives the positions of n in f. Denote these by Array1 and Array2. As proved elsewhere, Array2 is an interspersion. (Every row intersperses every other row except for initial terms.) Taken as a sequence, Array2 is a permutation, Perm1, of the positive integers; let Perm2 denote its inverse permutation. %C A194832 Examples: %C A194832 r................Array1....Array2....Perm2 %C A194832 tau..............A054065...A054069...A054068 %C A194832 -tau.............A194832...A194833...A194834 %C A194832 sqrt(2)..........A054073...A054077...A054076 %C A194832 -sqrt(2).........A194835...A194836...A194837 %C A194832 sqrt(3)..........A194838...A194839...A194840 %C A194832 -sqrt(3).........A194841...A194842...A194843 %C A194832 sqrt(5)..........A194844...A194845...A194846 %C A194832 -sqrt(5).........A194856...A194857...A194858 %C A194832 sqrt(6)..........A194871...A194872...A194873 %C A194832 -sqrt(6).........A194874...A194875...A194876 %C A194832 sqrt(8)..........A194877...A194878...A194879 %C A194832 -sqrt(8).........A194896...A194897...A194898 %C A194832 sqrt(12).........A194899...A194900...A194901 %C A194832 -sqrt(12)........A194902...A194903...A194904 %C A194832 e................A194859...A194860...A194861 %C A194832 -e...............A194865...A194866...A194864 %C A194832 pi...............A194905...A194906...A194907 %C A194832 -pi..............A194908...A194909...A194910 %C A194832 (1+sqrt(3))/2....A194862...A194863...A194867 %C A194832 -(1+sqrt(3))/2...A194868...A194869...A194870 %C A194832 2^(1/3)..........A194911...A194912...A194913 %D A194832 C. Kimberling, Fractal sequences and interspersions, Ars Combinatoria 45 (1997), 157-168. %H A194832 Wikipedia, <a href="http://en.wikipedia.org/wiki/Fractal_sequence">Fractal sequence</a> %e A194832 Fractional parts: {-r}=-0.61..;{-2r}=-0.23..;{-3r}=-0.85..;{-4r}=-0.47..; thus, row 4 is (3,1,4,2) because {-3r} < {-r} < {-4r} < {-2r}. [corrected by _Michel Dekking_, Nov 30 2020] %e A194832 First nine rows: %e A194832 1 %e A194832 1 2 %e A194832 3 1 2 %e A194832 3 1 4 2 %e A194832 3 1 4 2 5 %e A194832 3 6 1 4 2 5 %e A194832 3 6 1 4 7 2 5 %e A194832 8 3 6 1 4 7 2 5 %e A194832 8 3 6 1 9 4 7 2 5 %t A194832 r = -GoldenRatio; %t A194832 t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; %t A194832 f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] %t A194832 (* A194832 *) %t A194832 TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] %t A194832 row[n_] := Position[f, n]; %t A194832 u = TableForm[Table[row[n], {n, 1, 20}]] %t A194832 g[n_, k_] := Part[row[n], k]; %t A194832 p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194833 *) %t A194832 q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194834 *) %Y A194832 Cf. A194833, A194834, A054065. %K A194832 nonn,tabl %O A194832 1,3 %A A194832 _Clark Kimberling_, Sep 03 2011 %E A194832 Table in overview corrected by _Georg Fischer_, Jul 30 2023