A194833 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194832; an interspersion.
1, 2, 3, 5, 6, 4, 8, 10, 7, 9, 12, 14, 11, 13, 15, 18, 20, 16, 19, 21, 17, 24, 27, 22, 25, 28, 23, 26, 32, 35, 30, 33, 36, 31, 34, 29, 40, 44, 38, 42, 45, 39, 43, 37, 41, 49, 53, 47, 51, 55, 48, 52, 46, 50, 54, 60, 64, 57, 62, 66, 59, 63, 56, 61, 65, 58, 71, 76, 68
Offset: 1
Examples
Northwest corner: 1...2...5...8...12..18..24 3...6...10..14..20..27..35 4...7...11..16..22..30..38 9...13..19..25..33..42..51 15..21..28..36..45..55..66
Programs
-
Mathematica
r = -GoldenRatio; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A194832 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194833 *) q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194834 *)
Comments