A194838 Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=sqrt(3).
1, 2, 1, 3, 2, 1, 3, 2, 1, 4, 3, 2, 5, 1, 4, 3, 6, 2, 5, 1, 4, 7, 3, 6, 2, 5, 1, 4, 7, 3, 6, 2, 5, 1, 8, 4, 7, 3, 6, 2, 9, 5, 1, 8, 4, 7, 3, 10, 6, 2, 9, 5, 1, 8, 4, 11, 7, 3, 10, 6, 2, 9, 5, 1, 8, 4, 11, 7, 3, 10, 6, 2, 9, 5, 1, 12, 8, 4, 11, 7, 3, 10, 6, 2, 13, 9, 5, 1, 12, 8, 4, 11, 7, 3
Offset: 1
Examples
First nine rows: 1 2 1 3 2 1 3 2 1 4 3 2 5 1 4 3 6 2 5 1 4 7 3 6 2 5 1 4 7 3 6 2 5 1 8 4 7 3 6 2 9 5 1 8 4
Programs
-
Mathematica
r = Sqrt[3]; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A194838 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194839 *) q[n_] := Position[p, n]; Flatten[ Table[q[n], {n, 1, 80}]] (* A194840 *)
Comments