A194839 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194838; an interspersion.
1, 3, 2, 6, 5, 4, 9, 8, 7, 10, 14, 12, 11, 15, 13, 20, 18, 16, 21, 19, 17, 27, 25, 23, 28, 26, 24, 22, 34, 32, 30, 36, 33, 31, 29, 35, 43, 40, 38, 45, 42, 39, 37, 44, 41, 53, 50, 47, 55, 52, 49, 46, 54, 51, 48, 64, 61, 58, 66, 63, 60, 57, 65, 62, 59, 56, 75, 72, 69
Offset: 1
Examples
Northwest corner: 1...3...6...9...14..20..27 2...5...8...12..18..25..32 4...7...11..16..23..30..38 10..15..21..28..36..45..55 13..19..26..33..42..52..63 17..24..31..39..49..60..71
Programs
-
Mathematica
r = Sqrt[3]; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A194838 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194839 *) q[n_] := Position[p, n]; Flatten[ Table[q[n], {n, 1, 80}]] (* A194840 *)
Comments