A194842 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194841; an interspersion.
1, 2, 3, 4, 5, 6, 8, 9, 10, 7, 12, 14, 15, 11, 13, 17, 19, 21, 16, 18, 20, 23, 25, 27, 22, 24, 26, 28, 31, 33, 35, 29, 32, 34, 36, 30, 39, 42, 44, 37, 40, 43, 45, 38, 41, 48, 51, 54, 46, 49, 52, 55, 47, 50, 53, 58, 61, 64, 56, 59, 62, 65, 57, 60, 63, 66, 70, 73, 76
Offset: 1
Examples
Northwest corner: 1...2...4...8...12..17..23 3...5...9...14..19..25..33 6...10..15..21..27..35..44 7...11..16..22..29..37..46 13..18..24..32..40..49..59
Programs
-
Mathematica
r = -Sqrt[3]; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1,20}]] (* A194841 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194842 *) q[n_] := Position[p, n]; Flatten[ Table[q[n], {n, 1, 80}]] (* A194843 *)
Comments