A194845 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194844; an interspersion.
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 11, 17, 19, 20, 21, 16, 18, 23, 25, 27, 28, 22, 24, 26, 30, 32, 34, 36, 29, 31, 33, 35, 39, 41, 43, 45, 38, 40, 42, 44, 37, 48, 51, 53, 55, 47, 50, 52, 54, 46, 49, 58, 61, 64, 66, 57, 60, 63, 65, 56, 59, 62, 69, 72, 75
Offset: 1
Examples
Northwest corner: 1...2...4...7...12..17 3...5...8...13..19..25 6...9...14..20..27..34 10..15..21..28..36..45 11..16..22..29..38..47 18..24..31..40..50..60
Programs
-
Mathematica
r = Sqrt[5]; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A194844 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194845 *) q[n_] := Position[p, n]; Flatten[ Table[q[n], {n, 1, 80}]] (* A194846 *)
Comments