A194847 Write n = C(i,3)+C(j,2)+C(k,1) with i>j>k>=0; sequence gives i values.
2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10
Offset: 0
Keywords
Examples
The i,j,k coordinates for n equal to 0 through 10 are: 0, [2, 1, 0] 1, [3, 1, 0] 2, [3, 2, 0] 3, [3, 2, 1] 4, [4, 1, 0] 5, [4, 2, 0] 6, [4, 2, 1] 7, [4, 3, 0] 8, [4, 3, 1] 9, [4, 3, 2] 10, [5, 1, 0]
References
- D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3, Eq. (20), p. 360.
Crossrefs
Programs
-
Maple
# Given x and a list a, returns smallest i such that x >= a[i]. whereinlist:=proc(x,a) local i: if whattype(a) <> list then ERROR(`a not a list`); fi: for i from 1 to nops(a) do if x < a[i] then break; fi; od: RETURN(i-1); end: t3:=[seq(binomial(n,3),n=0..50)]; t2:=[seq(binomial(n,2),n=0..50)]; t1:=[seq(binomial(n,1),n=0..50)]; for n from 0 to 200 do i3:=whereinlist(n,t3); i2:=whereinlist(n-t3[i3],t2); i1:=whereinlist(n-t3[i3]-t2[i2],t1); L[n]:=[i3-1,i2-1,i1-1]; od: [seq(L[n][1],n=0..200)];
-
Python
from math import comb from sympy import integer_nthroot def A194847(n): return (m:=integer_nthroot(6*(n+1),3)[0])+(n>=comb(m+2,3))+1 # Chai Wah Wu, Nov 05 2024
Formula
Equals A056556(n) + 2.
Comments