cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194847 Write n = C(i,3)+C(j,2)+C(k,1) with i>j>k>=0; sequence gives i values.

Original entry on oeis.org

2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10
Offset: 0

Views

Author

N. J. A. Sloane, Sep 03 2011

Keywords

Comments

Each n >= 0 has a unique representation as n = C(i,3)+C(j,2)+C(k,1) with i>j>k>=0. This is the combinatorial number system of degree t = 3, where we get [A194847, A194848, A056558]. For degree t = 2 we get [A002024, A002262] and A138036.

Examples

			The i,j,k coordinates for n equal to 0 through 10 are:
0, [2, 1, 0]
1, [3, 1, 0]
2, [3, 2, 0]
3, [3, 2, 1]
4, [4, 1, 0]
5, [4, 2, 0]
6, [4, 2, 1]
7, [4, 3, 0]
8, [4, 3, 1]
9, [4, 3, 2]
10, [5, 1, 0]
		

References

  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.3, Eq. (20), p. 360.

Crossrefs

The [i,j,k] values are [A194847, A194848, A056558], or equivalently [A056556+2, A056557+1, A056558]. See A194849 for the union list of triples.
Cf. also A002024, A002262, A138036.

Programs

  • Maple
    # Given x and a list a, returns smallest i such that x >= a[i].
    whereinlist:=proc(x,a)  local i:
    if whattype(a) <> list then ERROR(`a not a list`); fi:
    for i from 1 to nops(a) do if x < a[i] then break; fi; od:
    RETURN(i-1); end:
    t3:=[seq(binomial(n,3),n=0..50)];
    t2:=[seq(binomial(n,2),n=0..50)];
    t1:=[seq(binomial(n,1),n=0..50)];
    for n from 0 to 200 do
    i3:=whereinlist(n,t3);
    i2:=whereinlist(n-t3[i3],t2);
    i1:=whereinlist(n-t3[i3]-t2[i2],t1);
    L[n]:=[i3-1,i2-1,i1-1];
    od:
    [seq(L[n][1],n=0..200)];
  • Python
    from math import comb
    from sympy import integer_nthroot
    def A194847(n): return (m:=integer_nthroot(6*(n+1),3)[0])+(n>=comb(m+2,3))+1 # Chai Wah Wu, Nov 05 2024

Formula

Equals A056556(n) + 2.