A194854 Starting from a(1)=1, describe previous terms and then add all the digits.
1, 2, 5, 11, 13, 18, 28, 30, 32, 34, 40, 42, 44, 46, 54, 56, 58, 60, 62, 64, 66, 68, 70, 79, 90, 92, 94, 96, 98, 100, 103, 106, 100, 94, 87, 89, 91, 84, 86, 88, 81, 83, 85, 87, 89, 82, 84, 86, 88, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 104, 107, 110, 113
Offset: 1
Examples
Start with 1. There is one 1: 11 and 1+1=2. The sequence is now 1,2. Therefore one 1 and one 2: 1112 and 1+1+1+2=5. The sequence is now 1,2,5. Again: 111215 and 1+1+1+2+1+5=11. And so on.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..10000
- Paolo P. Lava, Plot of the first 10000 terms of the sequence
Programs
-
Maple
sd:=proc(j) local c,d,h,k; h:=j; c:=0; if h>0 then d:=floor(evalf(log10(h))+1); for k from 1 to d do c:=c+h-10*trunc(h/10); h:=trunc(h/10); od; fi; c; end: P:=proc(i) local a,b,f,n,p,s,v; v:=array[10]; v[1]:=1; v[10]:=0; print(v[1]); for n from 2 to 9 do v[n]:=0; od; for n from 1 by 1 to i do a:=0; for p from 1 to 10 do if sd(v[p])=0 then a:=a+sd(v[p]); else a:=a+(p mod 10)+sd(v[p]); fi; od; print(a); s:=floor(evalf(log10(a))+1); for p from 1 to s do f:=a-10*trunc(a/10); a:=trunc(a/10); if f=0 then v[10]:=v[10]+1; else v[f]:=v[f]+1; fi; od; od; end: P(10000);