A194862 Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=(1+sqrt(3))/2.
1, 1, 2, 3, 1, 2, 3, 1, 4, 2, 3, 1, 4, 2, 5, 3, 6, 1, 4, 2, 5, 3, 6, 1, 4, 7, 2, 5, 3, 6, 1, 4, 7, 2, 5, 8, 3, 6, 9, 1, 4, 7, 2, 5, 8, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11, 3, 6, 9, 1, 12, 4, 7, 10, 2, 5, 8, 11, 3, 6, 9, 1, 12, 4, 7, 10, 2, 13, 5, 8, 11, 3, 14
Offset: 1
Examples
First nine rows: 1 1 2 3 1 2 3 1 4 2 3 1 4 2 5 3 6 1 4 2 5 3 6 1 4 7 2 5 3 6 1 4 7 2 5 8 3 6 9 1 4 7 2 5 8
Programs
-
Mathematica
r = (1 + Sqrt[3])/2; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A194862 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194863 *) q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194867 *)
Comments