A194865 Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {-e}, {-2e}, ..., {-ne}.
1, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 1, 5, 2, 3, 4, 1, 5, 2, 6, 3, 4, 1, 5, 2, 6, 3, 7, 4, 8, 1, 5, 2, 6, 3, 7, 4, 8, 1, 5, 9, 2, 6, 3, 7, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 1, 12, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 1, 12, 5, 9, 2, 13, 6, 10, 3, 7, 11, 4, 8
Offset: 1
Examples
First nine rows: 1 1 2 1 2 3 4 1 2 3 4 1 5 2 3 4 1 5 2 6 3 4 1 5 2 6 3 7 4 8 1 5 2 6 3 7 4 8 1 5 9 2 6 3 7
Programs
-
Mathematica
r = -E; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A194865 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194866 *) q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194864 *)
Comments