A194874 Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=-sqrt(6).
1, 2, 1, 2, 1, 3, 2, 4, 1, 3, 2, 4, 1, 3, 5, 2, 4, 6, 1, 3, 5, 2, 4, 6, 1, 3, 5, 7, 2, 4, 6, 8, 1, 3, 5, 7, 2, 4, 6, 8, 1, 3, 5, 7, 9, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9, 11, 2, 4, 6, 8, 10, 1, 3, 5, 7, 9, 11, 2, 4, 6, 8, 10, 1, 12, 3, 5, 7, 9, 11, 2, 13, 4, 6, 8, 10, 1, 12, 3, 5, 7, 9, 11, 2, 13
Offset: 1
Examples
First nine rows: 1 2 1 2 1 3 2 4 1 3 2 4 1 3 5 2 4 6 1 3 5 2 4 6 1 3 5 7 2 4 6 8 1 3 5 7 2 4 6 8 1 3 5 7 9
Programs
-
Mathematica
r = -Sqrt[6]; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A194874 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194875 *) q[n_] := Position[p, n]; Flatten[ Table[q[n], {n, 1, 80}]] (* A194876 *)
Comments