A194878 Rectangular array, by antidiagonals: row n gives the positions of n in the fractal sequence A194877; an interspersion.
1, 3, 2, 6, 5, 4, 10, 9, 8, 7, 15, 14, 13, 12, 11, 20, 19, 18, 17, 16, 21, 27, 25, 24, 23, 22, 28, 26, 35, 33, 31, 30, 29, 36, 34, 32, 44, 42, 40, 38, 37, 45, 43, 41, 39, 54, 52, 50, 48, 46, 55, 53, 51, 49, 47, 65, 63, 61, 59, 57, 66, 64, 62, 60, 58, 56, 76, 74, 72
Offset: 1
Examples
Northwest corner: 1...3...6...10..15..20..27 2...5...9...14..19..25..33 4...8...13..18..24..31..40 7...12..17..23..30..38..48 11..16..22..29..37..46..57
Programs
-
Mathematica
r = Sqrt[8]; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A194877 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194878 *) q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194879 *)
Comments