cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194894 The number of the ordered triples (A,B,C) satisfying the system of the modular relations {A*B - B*A = C, B*C - C*B = A, C*A - A*C = B}, where A,B,C are distinct 2 X 2 matrices over Z(n).

This page as a plain text file.
%I A194894 #27 Jan 12 2017 02:05:20
%S A194894 0,0,24,0,120,24,336,0,648,120,1320,24,2184,336,3024,0,4896,648,6840,
%T A194894 120,8424,1320,12144,24,15000,2184,17496,336,24360,3024,29760,0,33024,
%U A194894 4896,40776,648,50616,6840,54624,120,68880
%N A194894 The number of the ordered triples (A,B,C) satisfying the system of the modular relations {A*B - B*A = C, B*C - C*B = A, C*A - A*C = B}, where A,B,C are distinct 2 X 2 matrices over Z(n).
%C A194894 If (A,B,C) is a triple and X is chosen from among A,B,C, then trace(X)=0 mod n, X*X = -det(X)*IdentityMatrix mod n, A*B + B*A = B*C + C*B = C*A + A*C = 0 mod n, det(A) = det(B) = det(C) mod n, A*A = B*B = C*C mod n, A = 2*B*C, B = 2*C*A, C = 2*A*B mod n.
%C A194894 For a given value of n, consider the family of triples (A,B,C) for which d = det(A) = det(B) = det(C) mod n. Let b(n,d) denote the number of elements of the set {A: (A,B,C) is a triple and det(A) = d}. Let b(n) = Sum{ b(n,d) for all such d }, for example, d(15) = 6 + 30 + 180. Detailed results of searching for trios (N(d) = number of triples in the family):
%C A194894 . .n b(n,d) ...d ......N
%C A194894 . .1 .....0 .... ......0
%C A194894 . .2 .....0 .... ......0
%C A194894 . .3 .....6 ...1 .....24
%C A194894 . .4 .....0 .... ......0
%C A194894 . .5 ....30 ...4 ....120
%C A194894 . .6 .....6 ...4 .....24
%C A194894 . .7 ....42 ...2 ....336
%C A194894 . .8 .....0 .... ......0
%C A194894 . .9 ....54 ...7 ....648
%C A194894 . 10 ....30 ...4 ....120
%C A194894 . 11 ...110 ...3 ...1320
%C A194894 . 12 .....6 ...4 .....24
%C A194894 . 13 ...182 ..10 ...2184
%C A194894 . 14 ....42 ...2 ....336
%C A194894 . 15......6 ..10 .....24
%C A194894 . 15.....30 ...9 ....120
%C A194894 . 15....180 ...4 ...2880
%C A194894 . 16 .....0 .... ......0
%C A194894 . 17 ...306 ..13 ...4896
%C A194894 . 18 ....54 ..16 ....648
%C A194894 . 19 ...342 ...5 ...6840
%C A194894 . 20 ....30 ...4 ....120
%C A194894 . 21......6 ...7 .....24
%C A194894 . 21....252 ..16 ...8064
%C A194894 . 21.....42 ...9 ....336
%C A194894 . 22 ...110 ..14 ...1320
%C A194894 . 23 ...506 ...6 ..12144
%C A194894 . 24 .....6 ..16 .....24
%C A194894 . 25 ...750 ..19 ..15000
%C A194894 . 26 ...182 .... ...2184
%C A194894 . 27 ...486 ...7 ..17496
%C A194894 . 28 ....42 ..16 ....336
%C A194894 . 29 ...870 ..22 ..24360
%C A194894 . 30......6 ..10 .....24
%C A194894 . 30.....30 ..24 ....120
%C A194894 . 30....180 ...4 ...2880
%C A194894 . 31 ...930 ...8 ..29760
%C A194894 . 32 .....0 .... ......0
%C A194894 . 33......6 ..22 .....24
%C A194894 . 33....660 ..25 ..31680
%C A194894 . 33....110 ...3 ...1320
%C A194894 . 34 ...306 ..30 ...4896
%C A194894 . 35...1260 ...9 ..40320
%C A194894 . 35.....42 ..30 ....336
%C A194894 . 35.....30 ..14 ....120
%C A194894 . 36 ....54 ..16 ....648
%C A194894 . 37 ..1406 ..28 ..50616
%C A194894 . 38 ...342 ..24 ...6840
%C A194894 . 39......6 ..13 .....24
%C A194894 . 39....182 ..36 ...2184
%C A194894 . 39...1092 ..10 ..52416
%C A194894 . 40 ....30 ..24 ....120
%C A194894 . 41 ..1722 ..31 ..68880
%C A194894 Remarks for the cases n<=41 (conjectures for n>41):
%C A194894 b(n) is similar to a(n), i.e., b(2^e)=0 for e>=0, b(m*2^e)=b(m) for m>=0 and e>=0, b(m*n) = b(m) + b(n) + b(m)*b(n) for gcd(m,n)=1;
%C A194894 b(p) = (p-1)*p for primes of the form p = 4*k + 1;
%C A194894 b(p) = p*(p+1) for primes of the form p = 4*k - 1;
%C A194894 b(p^e) = b(p)*(p^(2*(e-1))) for odd primes p and e>=1;
%C A194894 if n=p^e (p is odd prime, e>=1) then d is a constant for all trios (there is only one family), moreover 4*d=1 (mod n).
%F A194894 a(2^e) = 0 for e>=0; a( m*(2^e) ) = a(m) for m>=1,e>=0.
%F A194894 a(p^e) = (p^2-1)*p^(3*e-2) for odd prime p,e>=1.
%F A194894 a(m*n) = a(m) + a(n) + a(m)*a(n) for gcd(m,n)=1
%e A194894 The matrices A=[0,1;2,0], B=[1,1;1,2], C=[2,1;1,1] of row order form satisfy the system of the (mod 3)-relations {A*B - B*A = C, A#B, B*C - C*B = A, B#C, C*A - A*C = B, C#A}, so we have a trio (+A,+B,+C). All the solutions of the system can be represented by the trios
%e A194894 (+A,+B,+C), (+B,+C,+A), (+C,+A,+B),
%e A194894 (+A,-C,+B), (-C,+B,+A), (+B,+A,-C),
%e A194894 (+A,+C,-B), (+C,-B,+A), (-B,+A,+C),
%e A194894 (+A,-B,-C), (-B,-C,+A), (-C,+A,-B),
%e A194894 (-A,+B,-C), (+B,-C,-A), (-C,-A,+B),
%e A194894 (-A,-C,-B), (-C,-B,-A), (-B,-A,-C),
%e A194894 (-A,+C,+B), (+C,+B,-A), (+B,-A,+C),
%e A194894 (-A,-B,+C), (-B,+C,-A), (+C,-A,-B), so a(3)=24.
%Y A194894 Cf. A000056, A181107.
%K A194894 easy,nonn
%O A194894 1,3
%A A194894 _Erdos Pal_, Sep 04 2011