A194908 Triangular array (and fractal sequence): row n is the permutation of (1,2,...,n) obtained from the increasing ordering of fractional parts {r}, {2r}, ..., {nr}, where r=-Pi.
1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 5, 4, 3, 2, 1, 6, 5, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 1, 7, 6, 5, 4, 3, 2, 1, 8, 7, 6, 5, 4, 3, 2, 9, 1, 8, 7, 6, 5, 4, 3, 10, 2, 9, 1, 8, 7, 6, 5, 4, 11, 3, 10, 2, 9, 1, 8, 7, 6, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 7, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 7, 14, 6
Offset: 1
Examples
First nine rows: 1; 2, 1; 3, 2, 1; 4, 3, 2, 1; 5, 4, 3, 2, 1; 6, 5, 4, 3, 2, 1; 7, 6, 5, 4, 3, 2, 1; 7, 6, 5, 4, 3, 2, 1, 8; 7, 6, 5, 4, 3, 2, 9, 1, 8;
Programs
-
Mathematica
r = -Pi; t[n_] := Table[FractionalPart[k*r], {k, 1, n}]; f = Flatten[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 20}]] (* A194908 *) TableForm[Table[Flatten[(Position[t[n], #1] &) /@ Sort[t[n], Less]], {n, 1, 15}]] row[n_] := Position[f, n]; u = TableForm[Table[row[n], {n, 1, 20}]] g[n_, k_] := Part[row[n], k]; p = Flatten[Table[g[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194909 *) q[n_] := Position[p, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194910 *)
Comments