This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194914 #6 Mar 30 2012 18:57:44 %S A194914 1,2,1,2,3,1,2,4,3,1,2,5,4,3,1,2,5,6,4,3,1,2,5,7,6,4,3,1,2,5,8,7,6,4, %T A194914 3,1,2,5,8,9,7,6,4,3,1,2,5,8,10,9,7,6,4,3,1,2,5,8,11,10,9,7,6,4,3,1,2, %U A194914 5,8,11,12,10,9,7,6,4,3,1,2,5,8,11,13,12,10,9,7,6,4,3,1,2,5,8 %N A194914 Fractalization of (1+[n/sqrt(8)]), where [ ]=floor. %C A194914 See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence. The sequence (1+[n/sqrt(8)]) is A194990. %t A194914 r = Sqrt[8]; p[n_] := 1 + Floor[n/r] %t A194914 Table[p[n], {n, 1, 90}] (* A194990 *) %t A194914 g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] %t A194914 f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] %t A194914 f[20] (* A194914 *) %t A194914 row[n_] := Position[f[30], n]; %t A194914 u = TableForm[Table[row[n], {n, 1, 5}]] %t A194914 v[n_, k_] := Part[row[n], k]; %t A194914 w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, %t A194914 {k, 1, n}]] (* A194915 *) %t A194914 q[n_] := Position[w, n]; Flatten[Table[q[n], %t A194914 {n, 1, 80}]] (* A194916 *) %Y A194914 Cf. A194959, A194914, A194915, A194916. %K A194914 nonn %O A194914 1,2 %A A194914 _Clark Kimberling_, Sep 08 2011