cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194917 Fractalization of (n-[nr-n]), where [ ]=floor and r=(1+sqrt(5))/2 (the golden ratio).

This page as a plain text file.
%I A194917 #6 Mar 30 2012 18:57:44
%S A194917 1,2,1,2,3,1,2,4,3,1,2,5,4,3,1,2,5,6,4,3,1,2,5,7,6,4,3,1,2,5,7,8,6,4,
%T A194917 3,1,2,5,7,9,8,6,4,3,1,2,5,7,10,9,8,6,4,3,1,2,5,7,10,11,9,8,6,4,3,1,2,
%U A194917 5,7,10,12,11,9,8,6,4,3,1,2,5,7,10,13,12,11,9,8,6,4,3,1,2,5,7
%N A194917 Fractalization of (n-[nr-n]), where [ ]=floor and r=(1+sqrt(5))/2 (the golden ratio).
%C A194917 See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence.  The sequence (n-[nr-n]) is A189663.
%t A194917 r = GoldenRatio; p[n_] := n - Floor[n/r]
%t A194917 Table[p[n], {n, 1, 90}]  (* A189663 *)
%t A194917 g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]]
%t A194917 f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]]
%t A194917 f[20] (*  A194917 *)
%t A194917 row[n_] := Position[f[30], n];
%t A194917 u = TableForm[Table[row[n], {n, 1, 5}]]
%t A194917 v[n_, k_] := Part[row[n], k];
%t A194917 w = Flatten[ Table[v[k, n - k + 1], {n, 1, 13},
%t A194917 {k, 1, n}]] (* A194918 *)
%t A194917 q[n_] := Position[w, n]; Flatten[Table[q[n],
%t A194917 {n, 1, 80}]] (* A194919 *)
%Y A194917 Cf. A194959, A189663, A194918, A194919.
%K A194917 nonn
%O A194917 1,2
%A A194917 _Clark Kimberling_, Sep 08 2011