This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194921 #10 Nov 18 2017 17:53:52 %S A194921 1,2,1,3,2,1,3,4,2,1,3,5,4,2,1,3,6,5,4,2,1,3,6,7,5,4,2,1,3,6,8,7,5,4, %T A194921 2,1,3,6,9,8,7,5,4,2,1,3,6,10,9,8,7,5,4,2,1,3,6,10,11,9,8,7,5,4,2,1,3, %U A194921 6,10,12,11,9,8,7,5,4,2,1,3,6,10,13,12,11,9,8,7,5,4,2,1,3,6,10 %N A194921 Fractalization of (n - [n/sqrt(2)]), where [ ]=floor. %C A194921 See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence. The sequence (n-[n/sqrt(2)]) is A194920. %H A194921 G. C. Greubel, <a href="/A194921/b194921.txt">Table of n, a(n) for n = 1..5050</a> %t A194921 r = Sqrt[2]; p[n_] := n - Floor[n/r] %t A194921 Table[p[n], {n, 1, 90}] (* A194920 *) %t A194921 g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] %t A194921 f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] %t A194921 f[20] (* A194921 *) %t A194921 row[n_] := Position[f[30], n]; %t A194921 u = TableForm[Table[row[n], {n, 1, 5}]] %t A194921 v[n_, k_] := Part[row[n], k]; %t A194921 w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, %t A194921 {k, 1, n}]] (* A194922 *) %t A194921 q[n_] := Position[w, n]; Flatten[Table[q[n], %t A194921 {n, 1, 80}]] (* A195071 *) %Y A194921 Cf. A194920, A194922, A195071. %K A194921 nonn %O A194921 1,2 %A A194921 _Clark Kimberling_, Sep 08 2011