This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194962 #8 Oct 23 2022 23:26:45 %S A194962 1,2,3,4,5,6,7,9,10,8,11,14,15,12,13,16,20,21,17,18,19,22,27,28,23,25, %T A194962 26,24,29,35,36,30,33,34,31,32,37,44,45,38,42,43,39,40,41,46,54,55,47, %U A194962 52,53,48,50,51,49,56,65,66,57,63,64,58,61,62,59,60,67,77,78,68,75,76,69,73,74,70,71,72 %N A194962 Interspersion fractally induced by A194960. %C A194962 See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence. %H A194962 G. C. Greubel, <a href="/A194962/b194962.txt">Antidiagonals n = 0..50, flattened</a> %e A194962 Northwest corner: %e A194962 1...2...4...7..11..16..22 %e A194962 3...5...9..14..20..27..35 %e A194962 6..10..15..21..28..36..45 %e A194962 8..12..17..23..30..38..47 %e A194962 18..13..25..33..42..52..63 %e A194962 Antidiagonals of the array: %e A194962 1; %e A194962 2, 3; %e A194962 4, 5, 6; %e A194962 7, 9, 10, 8; %e A194962 11, 14, 15, 12, 13; %e A194962 16, 20, 21, 17, 18, 19; %e A194962 22, 27, 28, 23, 25, 26, 24; %e A194962 29, 35, 36, 30, 33, 34, 31, 32; %e A194962 37, 44, 45, 38, 42, 43, 39, 40, 41; %t A194962 p[n_] := Floor[(n + 2)/3] + Mod[n - 1, 3] %t A194962 Table[p[n], {n, 1, 90}] (* A194960 *) %t A194962 g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] %t A194962 f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] %t A194962 f[20] (* A194961 *) %t A194962 row[n_] := Position[f[30], n]; %t A194962 u = TableForm[Table[row[n], {n, 1, 5}]] %t A194962 v[n_, k_] := Part[row[n], k]; %t A194962 w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194962 *) %t A194962 q[n_] := Position[w, n]; Flatten[ %t A194962 Table[q[n], {n, 1, 80}]] (* A194963 *) %Y A194962 Cf. A194959, A194960, A194962, A194963. %K A194962 nonn,tabl %O A194962 1,2 %A A194962 _Clark Kimberling_, Sep 07 2011