A194968 Fractalization of (1+[n/r]), where [ ]=floor, r=(1+sqrt(5))/2 (the golden ratio), and n>=1.
1, 1, 2, 1, 3, 2, 1, 3, 4, 2, 1, 3, 4, 5, 2, 1, 3, 4, 6, 5, 2, 1, 3, 4, 6, 7, 5, 2, 1, 3, 4, 6, 8, 7, 5, 2, 1, 3, 4, 6, 8, 9, 7, 5, 2, 1, 3, 4, 6, 8, 9, 10, 7, 5, 2, 1, 3, 4, 6, 8, 9, 11, 10, 7, 5, 2, 1, 3, 4, 6, 8, 9, 11, 12, 10, 7, 5, 2, 1, 3, 4, 6, 8, 9, 11, 12, 13, 10, 7, 5, 2, 1, 3, 4
Offset: 1
Keywords
Programs
-
Mathematica
r = GoldenRatio; p[n_] := 1 + Floor[n/r] Table[p[n], {n, 1, 90}] (* A019446 *) g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] f[20] (* A194968 *) row[n_] := Position[f[30], n]; u = TableForm[Table[row[n], {n, 1, 5}]] v[n_, k_] := Part[row[n], k]; w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A194969 *) q[n_] := Position[w, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A194970 *)
Comments