cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194976 Fractalization of (1+[n/sqrt(2)]), where [ ]=floor.

This page as a plain text file.
%I A194976 #10 Mar 29 2018 02:45:50
%S A194976 1,1,2,1,2,3,1,2,4,3,1,2,4,5,3,1,2,4,5,6,3,1,2,4,5,7,6,3,1,2,4,5,7,8,
%T A194976 6,3,1,2,4,5,7,8,9,6,3,1,2,4,5,7,8,9,10,6,3,1,2,4,5,7,8,9,11,10,6,3,1,
%U A194976 2,4,5,7,8,9,11,12,10,6,3,1,2,4,5,7,8,9,11,12,13,10,6,3,1,2,4
%N A194976 Fractalization of (1+[n/sqrt(2)]), where [ ]=floor.
%C A194976 See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence.  The sequence (1+[n/sqrt(2)]) is A049474.
%H A194976 G. C. Greubel, <a href="/A194976/b194976.txt">Table of n, a(n) for n = 1..11325</a>
%t A194976 r = Sqrt[2]; p[n_] := 1 + Floor[n/r]
%t A194976 Table[p[n], {n, 1, 90}]  (* A049474 *)
%t A194976 g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]]
%t A194976 f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]]
%t A194976 f[20] (* A194976 *)
%t A194976 row[n_] := Position[f[30], n];
%t A194976 u = TableForm[Table[row[n], {n, 1, 5}]]
%t A194976 v[n_, k_] := Part[row[n], k];
%t A194976 w = Flatten[Table[v[k, n - k + 1], {n, 1, 13},
%t A194976 {k, 1, n}]] (* A194977 *)
%t A194976 q[n_] := Position[w, n]; Flatten[Table[q[n],
%t A194976 {n, 1, 80}]] (* A194978 *)
%Y A194976 Cf. A194959, A049474, A194977, A194978.
%K A194976 nonn
%O A194976 1,3
%A A194976 _Clark Kimberling_, Sep 07 2011