This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194980 #6 Mar 30 2012 18:57:44 %S A194980 1,1,2,1,3,2,1,3,4,2,1,3,5,4,2,1,3,5,6,4,2,1,3,5,6,7,4,2,1,3,5,6,8,7, %T A194980 4,2,1,3,5,6,8,9,7,4,2,1,3,5,6,8,10,9,7,4,2,1,3,5,6,8,10,11,9,7,4,2,1, %U A194980 3,5,6,8,10,12,11,9,7,4,2,1,3,5,6,8,10,12,13,11,9,7,4,2,1,3,5 %N A194980 Fractalization of (1+[n/sqrt(3)]), where [ ]=floor. %C A194980 See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence. The sequence (1+[n/sqrt(3)]) is A194979. %t A194980 r = Sqrt[3]; p[n_] := 1 + Floor[n/r] %t A194980 Table[p[n], {n, 1, 90}] (* A194979 = 1+ A097337 *) %t A194980 g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] %t A194980 f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] %t A194980 f[20] (* A194980 *) %t A194980 row[n_] := Position[f[30], n]; %t A194980 u = TableForm[Table[row[n], {n, 1, 5}]] %t A194980 v[n_, k_] := Part[row[n], k]; %t A194980 w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, %t A194980 {k, 1, n}]] (* A194981 *) %t A194980 q[n_] := Position[w, n]; Flatten[Table[q[n], %t A194980 {n, 1, 80}]] (* A194982 *) %Y A194980 Cf. A194959, A194879, A194981, A194982. %K A194980 nonn %O A194980 1,3 %A A194980 _Clark Kimberling_, Sep 07 2011