This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194981 #5 Mar 30 2012 18:57:44 %S A194981 1,2,3,4,6,5,7,10,8,9,11,15,12,14,13,16,21,17,20,18,19,22,28,23,27,24, %T A194981 25,26,29,36,30,35,31,32,34,33,37,45,38,44,39,40,43,41,42,46,55,47,54, %U A194981 48,49,53,50,52,51,56,66,57,65,58,59,64,60,63,61,62,67,78,68 %N A194981 Interspersion fractally induced by A194979, a rectangular array, by antidiagonals. %C A194981 See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence. Every pair of rows eventually intersperse. As a sequence, A194981 is a permutation of the positive integers, with inverse A194982. %e A194981 Northwest corner: %e A194981 1...2...4...7...11..16..22 %e A194981 3...6...10..15..21..28..36 %e A194981 5...8...12..17..23..30..38 %e A194981 9...14..20..27..35..44..54 %e A194981 13..18..24..31..39..48..58 %t A194981 r = Sqrt[3]; p[n_] := 1 + Floor[n/r] %t A194981 Table[p[n], {n, 1, 90}] (* A194979 = 1+ A097337 *) %t A194981 g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] %t A194981 f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] %t A194981 f[20] (* A194980 *) %t A194981 row[n_] := Position[f[30], n]; %t A194981 u = TableForm[Table[row[n], {n, 1, 5}]] %t A194981 v[n_, k_] := Part[row[n], k]; %t A194981 w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, %t A194981 {k, 1, n}]] (* A194981 *) %t A194981 q[n_] := Position[w, n]; Flatten[Table[q[n], %t A194981 {n, 1, 80}]] (* A194982 *) %Y A194981 Cf. A194959, A019480, A194982. %K A194981 nonn,tabl %O A194981 1,2 %A A194981 _Clark Kimberling_, Sep 07 2011