cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194983 Fractalization of (1+[n/sqrt(5)]), where [ ]=floor.

This page as a plain text file.
%I A194983 #5 Mar 30 2012 18:57:44
%S A194983 1,2,1,2,3,1,2,4,3,1,2,4,5,3,1,2,4,6,5,3,1,2,4,6,7,5,3,1,2,4,6,8,7,5,
%T A194983 3,1,2,4,6,8,9,7,5,3,1,2,4,6,8,10,9,7,5,3,1,2,4,6,8,11,10,9,7,5,3,1,2,
%U A194983 4,6,8,11,12,10,9,7,5,3,1,2,4,6,8,11,13,12,10,9,7,5,3,1,2,4,6
%N A194983 Fractalization of (1+[n/sqrt(5)]), where [ ]=floor.
%C A194983 See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence.  The sequence (1+[n/sqrt(5)]) is A194964.
%t A194983 r = Sqrt[5]; p[n_] := 1 + Floor[n/r]
%t A194983 Table[p[n], {n, 1, 90}]  (* A194964 *)
%t A194983 g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]]
%t A194983 f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]]
%t A194983 f[20] (* A194983 *)
%t A194983 row[n_] := Position[f[30], n];
%t A194983 u = TableForm[Table[row[n], {n, 1, 5}]]
%t A194983 v[n_, k_] := Part[row[n], k];
%t A194983 w = Flatten[Table[v[k, n - k + 1], {n, 1, 13},
%t A194983 {k, 1, n}]]  (* A194984 *)
%t A194983 q[n_] := Position[w, n]; Flatten[Table[q[n],
%t A194983 {n, 1, 80}]]  (* A194985 *)
%Y A194983 Cf. A194959, A194983, A194984, A194985.
%K A194983 nonn
%O A194983 1,2
%A A194983 _Clark Kimberling_, Sep 07 2011