This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194983 #5 Mar 30 2012 18:57:44 %S A194983 1,2,1,2,3,1,2,4,3,1,2,4,5,3,1,2,4,6,5,3,1,2,4,6,7,5,3,1,2,4,6,8,7,5, %T A194983 3,1,2,4,6,8,9,7,5,3,1,2,4,6,8,10,9,7,5,3,1,2,4,6,8,11,10,9,7,5,3,1,2, %U A194983 4,6,8,11,12,10,9,7,5,3,1,2,4,6,8,11,13,12,10,9,7,5,3,1,2,4,6 %N A194983 Fractalization of (1+[n/sqrt(5)]), where [ ]=floor. %C A194983 See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence. The sequence (1+[n/sqrt(5)]) is A194964. %t A194983 r = Sqrt[5]; p[n_] := 1 + Floor[n/r] %t A194983 Table[p[n], {n, 1, 90}] (* A194964 *) %t A194983 g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] %t A194983 f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] %t A194983 f[20] (* A194983 *) %t A194983 row[n_] := Position[f[30], n]; %t A194983 u = TableForm[Table[row[n], {n, 1, 5}]] %t A194983 v[n_, k_] := Part[row[n], k]; %t A194983 w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, %t A194983 {k, 1, n}]] (* A194984 *) %t A194983 q[n_] := Position[w, n]; Flatten[Table[q[n], %t A194983 {n, 1, 80}]] (* A194985 *) %Y A194983 Cf. A194959, A194983, A194984, A194985. %K A194983 nonn %O A194983 1,2 %A A194983 _Clark Kimberling_, Sep 07 2011