cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A194987 Fractalization of (1+[n/sqrt(6)]), where [ ]=floor.

This page as a plain text file.
%I A194987 #5 Mar 30 2012 18:57:44
%S A194987 1,2,1,2,3,1,2,4,3,1,2,4,5,3,1,2,4,6,5,3,1,2,4,7,6,5,3,1,2,4,7,8,6,5,
%T A194987 3,1,2,4,7,9,8,6,5,3,1,2,4,7,9,10,8,6,5,3,1,2,4,7,9,11,10,8,6,5,3,1,2,
%U A194987 4,7,9,12,11,10,8,6,5,3,1,2,4,7,9,12,13,11,10,8,6,5,3,1,2,4,7
%N A194987 Fractalization of (1+[n/sqrt(6)]), where [ ]=floor.
%C A194987 See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence.  The sequence (1+[n/sqrt(6)]) is A194986.
%t A194987 r = Sqrt[6]; p[n_] := 1 + Floor[n/r]
%t A194987 Table[p[n], {n, 1, 90}] (* A194986 *)
%t A194987 g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]]
%t A194987 f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]]
%t A194987 f[20] (* A194987 *)
%t A194987 row[n_] := Position[f[30], n];
%t A194987 u = TableForm[Table[row[n], {n, 1, 5}]]
%t A194987 v[n_, k_] := Part[row[n], k];
%t A194987 w = Flatten[Table[v[k, n - k + 1], {n, 1, 13},
%t A194987 {k, 1, n}]] (* A194988 *)
%t A194987 q[n_] := Position[w, n]; Flatten[Table[q[n],
%t A194987 {n, 1, 80}]]  (* A194989 *)
%Y A194987 Cf. A194959, A194986, A194988, A194989.
%K A194987 nonn
%O A194987 1,2
%A A194987 _Clark Kimberling_, Sep 07 2011