This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A194988 #13 Mar 30 2012 18:57:44 %S A194988 1,3,2,6,4,5,10,7,9,8,15,11,14,12,13,21,16,20,17,19,18,28,22,27,23,26, %T A194988 25,24,36,29,35,30,34,33,31,32,45,37,44,38,43,42,39,41,40,55,46,54,47, %U A194988 53,52,48,51,49,50,66,56,65,57,64,63,58,62,59,61,60,78,67,77 %N A194988 Interspersion fractally induced by A194987, a rectangular array, by antidiagonals. %C A194988 See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence. Every pair of rows eventually intersperse. As a sequence, A194988 is a permutation of the positive integers, with inverse A194989. %H A194988 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A194988 Northwest corner: %e A194988 1...3...6...10..15..21 %e A194988 2...4...7...11..16..22 %e A194988 5...9...14..20..27..35 %e A194988 8...12..17..23..30..38 %e A194988 13..19..26..34..43..53 %t A194988 r = Sqrt[6]; p[n_] := 1 + Floor[n/r] %t A194988 Table[p[n], {n, 1, 90}] (* A194986 *) %t A194988 g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] %t A194988 f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] %t A194988 f[20] (* A194987 *) %t A194988 row[n_] := Position[f[30], n]; %t A194988 u = TableForm[Table[row[n], {n, 1, 5}]] %t A194988 v[n_, k_] := Part[row[n], k]; %t A194988 w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, %t A194988 {k, 1, n}]] (* A194988 *) %t A194988 q[n_] := Position[w, n]; Flatten[Table[q[n], %t A194988 {n, 1, 80}]] (* A194989 *) %Y A194988 Cf. A194959, A194986, A194988, A194989. %K A194988 nonn,tabl %O A194988 1,2 %A A194988 _Clark Kimberling_, Sep 07 2011