A195000 Number of lower triangles of a 4 X 4 0..n array with each element differing from all of its horizontal and vertical neighbors by one.
2, 80, 248, 458, 672, 888, 1104, 1320, 1536, 1752, 1968, 2184, 2400, 2616, 2832, 3048, 3264, 3480, 3696, 3912, 4128, 4344, 4560, 4776, 4992, 5208, 5424, 5640, 5856, 6072, 6288, 6504, 6720, 6936, 7152, 7368, 7584, 7800, 8016, 8232, 8448, 8664, 8880, 9096
Offset: 1
Keywords
Examples
Some solutions for n=4: ..1........4........3........4........2........1........1........0 ..2.1......3.2......2.3......3.2......3.4......0.1......2.1......1.2 ..1.0.1....2.1.2....3.4.3....2.1.2....2.3.4....1.2.1....3.2.3....2.3.2 ..0.1.0.1..1.2.3.4..2.3.2.1..1.0.1.0..3.4.3.2..2.1.2.1..2.3.2.3..3.2.1.0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A194998.
Formula
Conjectures from Colin Barker, May 06 2018: (Start)
G.f.: 2*x*(1 + 38*x + 45*x^2 + 21*x^3 + 2*x^4 + x^5) / (1 - x)^2.
a(n) = 24*(9*n - 17) for n>4.
a(n) = 2*a(n-1) - a(n-2) for n>6.
(End)
Comments