cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195006 Some numbers of the form 2*x^3 + y^3 + z^3 found by a certain algorithm.

This page as a plain text file.
%I A195006 #22 Apr 13 2019 01:35:32
%S A195006 1247,1462,1588,2246,2822,3307,3335,3641,4990,5188,5279,5620,5629,
%T A195006 6707,6980,7097,7177,7323,7519,7853,8114,8380,8572,8644,8887,9274,
%U A195006 9589,9850
%N A195006 Some numbers of the form 2*x^3 + y^3 + z^3 found by a certain algorithm.
%C A195006 From Table 1, p. 7 of MacLeod.
%H A195006 N. Elkies, <a href="https://arxiv.org/abs/math/0005139">Rational points near curves and small nonzero |x^3 - y^2| via lattice reduction</a>, arXiv:math/0005139 [math.NT], 2000.
%H A195006 N. Elkies, <a href="https://doi.org/10.1007/10722028_2">Rational points near curves and small nonzero |x^3 - y^2| via lattice reduction</a>, in Algorithmic Number Theory (Leiden 2000), Lecture Notes in Computer Science 1838, Springer 2000.
%H A195006 A.-S. Elsenhans, J. Jahnel, <a href="http://dx.doi.org/10.1090/S0025-5718-08-02168-6">New sums of three cubes</a>, Math. Comp. 78 (2009) 1227-1230.
%H A195006 K. Koyama, <a href="http://www.jstor.org/stable/2585093">On searching for solutions of the Diophantine equation x^3 + y^3 + 2z^3 = n</a>, Math. Comp. 69 (2000) 1735-1742.
%H A195006 Allan J. MacLeod, <a href="http://arxiv.org/abs/1109.2396">New Solutions of d=2x^3+y^3+z^3</a>, arXiv:1109.2396v1 [math.NT], Sep 12, 2011.
%e A195006 1247 = 2*26478194^3 + 108525095^3 + (-109565866)^3.
%K A195006 nonn,less
%O A195006 1,1
%A A195006 _Jonathan Vos Post_, Sep 12 2011