A195009 Triangle read by rows, T(n,k) = k^n*A056040(n), n>=0, 0<=k<=n.
1, 0, 1, 0, 2, 8, 0, 6, 48, 162, 0, 6, 96, 486, 1536, 0, 30, 960, 7290, 30720, 93750, 0, 20, 1280, 14580, 81920, 312500, 933120, 0, 140, 17920, 306180, 2293760, 10937500, 39191040, 115296020, 0, 70, 17920, 459270, 4587520, 27343750, 117573120, 403536070, 1174405120
Offset: 0
Examples
1 0, 1 0, 2, 8 0, 6, 48, 162 0, 6, 96, 486, 1536 0, 30, 960, 7290, 30720, 93750 0, 20, 1280, 14580, 81920, 312500, 933120
Links
- Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
Programs
-
Maple
swing := n -> n!/iquo(n,2)!^2: pow := (n,k) -> if k=0 and n=0 then 1 else n^k fi: A195009 := (n,k) -> pow(k,n)*swing(n): # Formula: omega := proc(x) BesselI(0,2*m*x)+(2*m*x+1)*BesselI(1,2*m*x) end: f := n -> `if`(irem(n,2)=1,(n+1)/2,1/(n+1)): A195009 := proc(n,k) limit(f(n)*(D@@n)(omega)(x),x=0); subs(m=k,%) end;
-
Mathematica
sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; t[0, 0] = 1; t[n_, k_] := k^n*sf[n]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)
Formula
T(n,k) = f(n)*lim(x=0, (d^n/dx)(BesselI(0,2*k*x)+(2*k*x+1) *BesselI(1,2*k*x) where f(n) = (n+1)/2 if n is odd, 1/(n+1) otherwise.