This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195083 #9 Jun 26 2025 07:30:40 %S A195083 1,2,3,4,5,6,7,8,10,9,11,12,15,13,14,16,17,21,18,19,20,22,23,28,24,25, %T A195083 27,26,29,30,36,31,32,35,33,34,37,38,45,39,40,44,41,42,43,46,47,55,48, %U A195083 49,54,50,51,53,52,56,57,66,58,59,65,60,61,64,62,63,67,68,78 %N A195083 Interspersion fractally induced by (1+[2*n/3]), where [ ] = floor; a rectangular array, by antidiagonals. %C A195083 See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence. Every pair of rows eventually intersperse. As a sequence, A194983 is a permutation of the positive integers, with inverse A195096. %e A195083 Northwest corner: %e A195083 1 2 4 7 11 16 %e A195083 3 5 8 12 17 23 %e A195083 6 10 15 21 28 36 %e A195083 9 13 18 24 31 39 %e A195083 14 19 25 32 40 49 %t A195083 r = 2/3; p[n_] := 1 + Floor[n*r] %t A195083 Table[p[n], {n, 1, 90}] (* ess A004396 *) %t A195083 g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] %t A195083 f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] %t A195083 f[20] (* A195082 *) %t A195083 row[n_] := Position[f[30], n]; %t A195083 u = TableForm[Table[row[n], {n, 1, 5}]] %t A195083 v[n_, k_] := Part[row[n], k]; %t A195083 w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A195083 *) %t A195083 q[n_] := Position[w, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A195096 *) %Y A195083 Cf. A004396, A195082, A195096. %K A195083 nonn,tabl %O A195083 1,2 %A A195083 _Clark Kimberling_, Sep 08 2011