This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195097 #5 Mar 30 2012 18:57:44 %S A195097 1,1,2,1,2,3,1,2,3,4,1,2,3,5,4,1,2,3,5,6,4,1,2,3,5,6,7,4,1,2,3,5,6,7, %T A195097 8,4,1,2,3,5,6,7,9,8,4,1,2,3,5,6,7,9,10,8,4,1,2,3,5,6,7,9,10,11,8,4,1, %U A195097 2,3,5,6,7,9,10,11,12,8,4,1,2,3,5,6,7,9,10,11,13,12,8,4,1,2,3 %N A195097 Fractalization of (1+[3n/4]), where [ ] = floor. %C A195097 See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence. The sequence (1+[3n/4]) is a subsequence ofy A037915. %t A195097 r = 3/4; p[n_] := 1 + Floor[n*r] (* A037915 *) %t A195097 Table[p[n], {n, 1, 90}] %t A195097 g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] %t A195097 f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] %t A195097 f[20] (* A195097 *) %t A195097 row[n_] := Position[f[30], n]; %t A195097 u = TableForm[Table[row[n], {n, 1, 5}]] %t A195097 v[n_, k_] := Part[row[n], k]; %t A195097 w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, %t A195097 {k, 1, n}]](* A195098 *) %t A195097 q[n_] := Position[w, n]; Flatten[Table[q[n], %t A195097 {n, 1, 80}]](* A195099 *) %Y A195097 Cf. A194959, A002265, A195098, A195099. %K A195097 nonn %O A195097 1,3 %A A195097 _Clark Kimberling_, Sep 08 2011