cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195107 Fractalization of the fractal sequence A004736. Interspersion fractally induced by A004736.

This page as a plain text file.
%I A195107 #7 Mar 30 2012 18:57:44
%S A195107 1,1,2,3,1,2,3,1,4,2,3,5,1,4,2,6,3,5,1,4,2,6,3,5,7,1,4,2,6,3,8,5,7,1,
%T A195107 4,2,6,9,3,8,5,7,1,4,2,10,6,9,3,8,5,7,1,4,2,10,6,9,3,11,8,5,7,1,4,2,
%U A195107 10,6,9,12,3,11,8,5,7,1,4,2,10,6,13,9,12,3,11,8,5,7,1,4,2,10,14
%N A195107 Fractalization of the fractal sequence A004736. Interspersion fractally induced by A004736.
%C A195107 See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence.  The sequence A004736 is the fractal sequence obtained by concatenating the segments 1; 2,1; 3,2,1; 4,3,2,1;...
%t A195107 j[n_] := Table[n + 1 - k, {k, 1, n}]; t[1] = j[1];
%t A195107 t[n_] := Join[t[n - 1], j[n]]   (* A004736 *)
%t A195107 t[10]
%t A195107 p[n_] := t[20][[n]]
%t A195107 g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]]
%t A195107 f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]]
%t A195107 f[20] (* A195107 *)
%t A195107 row[n_] := Position[f[30], n];
%t A195107 u = TableForm[Table[row[n], {n, 1, 5}]]
%t A195107 v[n_, k_] := Part[row[n], k];
%t A195107 w = Flatten[Table[v[k, n - k + 1], {n, 1, 13},
%t A195107 {k, 1, n}]] (* A195108 *)
%t A195107 q[n_] := Position[w, n]; Flatten[Table[q[n],
%t A195107 {n, 1, 80}]] (* A195109 *)
%Y A195107 Cf. A194959, A004736, A195108, A195109.
%K A195107 nonn
%O A195107 1,3
%A A195107 _Clark Kimberling_, Sep 09 2011