This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195107 #7 Mar 30 2012 18:57:44 %S A195107 1,1,2,3,1,2,3,1,4,2,3,5,1,4,2,6,3,5,1,4,2,6,3,5,7,1,4,2,6,3,8,5,7,1, %T A195107 4,2,6,9,3,8,5,7,1,4,2,10,6,9,3,8,5,7,1,4,2,10,6,9,3,11,8,5,7,1,4,2, %U A195107 10,6,9,12,3,11,8,5,7,1,4,2,10,6,13,9,12,3,11,8,5,7,1,4,2,10,14 %N A195107 Fractalization of the fractal sequence A004736. Interspersion fractally induced by A004736. %C A195107 See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence. The sequence A004736 is the fractal sequence obtained by concatenating the segments 1; 2,1; 3,2,1; 4,3,2,1;... %t A195107 j[n_] := Table[n + 1 - k, {k, 1, n}]; t[1] = j[1]; %t A195107 t[n_] := Join[t[n - 1], j[n]] (* A004736 *) %t A195107 t[10] %t A195107 p[n_] := t[20][[n]] %t A195107 g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] %t A195107 f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] %t A195107 f[20] (* A195107 *) %t A195107 row[n_] := Position[f[30], n]; %t A195107 u = TableForm[Table[row[n], {n, 1, 5}]] %t A195107 v[n_, k_] := Part[row[n], k]; %t A195107 w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, %t A195107 {k, 1, n}]] (* A195108 *) %t A195107 q[n_] := Position[w, n]; Flatten[Table[q[n], %t A195107 {n, 1, 80}]] (* A195109 *) %Y A195107 Cf. A194959, A004736, A195108, A195109. %K A195107 nonn %O A195107 1,3 %A A195107 _Clark Kimberling_, Sep 09 2011