This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195110 #5 Mar 30 2012 18:57:44 %S A195110 1,2,1,2,3,1,4,2,3,1,4,5,2,3,1,4,5,6,2,3,1,7,4,5,6,2,3,1,7,8,4,5,6,2, %T A195110 3,1,7,8,9,4,5,6,2,3,1,7,8,9,10,4,5,6,2,3,1,11,7,8,9,10,4,5,6,2,3,1, %U A195110 11,12,7,8,9,10,4,5,6,2,3,1,11,12,13,7,8,9,10,4,5,6,2,3,1,11,12 %N A195110 Fractalization of the fractal sequence A002260. Interspersion fractally induced by A002260. %C A195110 See A194959 for a discussion of fractalization and the interspersion fractally induced by a sequence. The sequence A002260 is the fractal sequence obtained by concatenating the segments 1; 12; 123; 1234; 12345;... %t A195110 j[n_] := Table[k, {k, 1, n}]; t[1] = j[1]; %t A195110 t[n_] := Join[t[n - 1], j[n]] (* A002260 *) %t A195110 t[12] %t A195110 p[n_] := t[20][[n]] %t A195110 g[1] = {1}; g[n_] := Insert[g[n - 1], n, p[n]] %t A195110 f[1] = g[1]; f[n_] := Join[f[n - 1], g[n]] %t A195110 f[20] (* A195110 *) %t A195110 row[n_] := Position[f[30], n]; %t A195110 u = TableForm[Table[row[n], {n, 1, 5}]] %t A195110 v[n_, k_] := Part[row[n], k]; %t A195110 w = Flatten[Table[v[k, n - k + 1], {n, 1, 13}, {k, 1, n}]] (* A195111 *) %t A195110 q[n_] := Position[w, n]; Flatten[Table[q[n], {n, 1, 80}]] (* A195112 *) %Y A195110 Cf. A194959, A002260, A195111, A195112. %K A195110 nonn %O A195110 1,2 %A A195110 _Clark Kimberling_, Sep 09 2011