cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195151 Square array read by antidiagonals upwards: T(n,k) = n*((k-2)*(-1)^n+k+2)/4, n >= 0, k >= 0.

This page as a plain text file.
%I A195151 #20 Oct 26 2023 10:10:06
%S A195151 0,1,0,0,1,0,3,1,1,0,0,3,2,1,0,5,2,3,3,1,0,0,5,4,3,4,1,0,7,3,5,6,3,5,
%T A195151 1,0,0,7,6,5,8,3,6,1,0,9,4,7,9,5,10,3,7,1,0,0,9,8,7,12,5,12,3,8,1,0,
%U A195151 11,5,9,12,7,15,5,14,3,9,1,0,0,11,10,9,16,7
%N A195151 Square array read by antidiagonals upwards: T(n,k) = n*((k-2)*(-1)^n+k+2)/4, n >= 0, k >= 0.
%C A195151 Also square array T(n,k) read by antidiagonals in which column k lists the multiples of k and the odd numbers interleaved, n>=0, k>=0. Also square array T(n,k) read by antidiagonals in which if n is even then row n lists the multiples of (n/2), otherwise if n is odd then row n lists a constant sequence: the all n's sequence. Partial sums of the numbers of column k give the column k of A195152. Note that if k >= 1 then partial sums of the numbers of the column k give the generalized m-gonal numbers, where m = k + 4.
%C A195151 All columns are multiplicative. - _Andrew Howroyd_, Jul 23 2018
%e A195151 Array begins:
%e A195151 .  0,   0,   0,   0,   0,   0,   0,   0,   0,   0,...
%e A195151 .  1,   1,   1,   1,   1,   1,   1,   1,   1,   1,...
%e A195151 .  0,   1,   2,   3,   4,   5,   6,   7,   8,   9,...
%e A195151 .  3,   3,   3,   3,   3,   3,   3,   3,   3,   3,...
%e A195151 .  0,   2,   4,   6,   8,  10,  12,  14,  16,  18,...
%e A195151 .  5,   5,   5,   5,   5,   5,   5,   5,   5,   5,...
%e A195151 .  0,   3,   6,   9,  12,  15,  18,  21,  24,  27,...
%e A195151 .  7,   7,   7,   7,   7,   7,   7,   7,   7,   7,...
%e A195151 .  0,   4,   8,  12,  16,  20,  24,  28,  32,  36,...
%e A195151 .  9,   9,   9,   9,   9,   9,   9,   9,   9,   9,...
%e A195151 .  0,   5,  10,  15,  20,  25,  30,  35,  40,  45,...
%e A195151 ...
%o A195151 (PARI) T(n,k) = n*((k-2)*(-1)^n+k+2)/4 \\ _Andrew Howroyd_, Jul 23 2018
%Y A195151 Rows: A000004, A000012, A001477, A010701, A005843, A010716, A008585, A010727, A008586, A010734, A008587.
%Y A195151 Columns k: A026741 (k=1), A001477 (k=2), zero together with A080512 (k=3), A022998 (k=4), A195140 (k=5), zero together with A165998 (k=6), A195159 (k=7), A195161 (k=8), A195312 k=(9), A195817 (k=10), A317311 (k=11), A317312 (k=12), A317313 (k=13), A317314 k=(14), A317315 (k=15), A317316 (k=16), A317317 (k=17), A317318 (k=18), A317319 k=(19), A317320 (k=20), A317321 (k=21), A317322 (k=22), A317323 (k=23), A317324 k=(24), A317325 (k=25), A317326 (k=26).
%K A195151 nonn,tabl,mult
%O A195151 0,7
%A A195151 _Omar E. Pol_, Sep 14 2011