This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195159 #56 Oct 25 2023 09:29:55 %S A195159 0,1,7,3,14,5,21,7,28,9,35,11,42,13,49,15,56,17,63,19,70,21,77,23,84, %T A195159 25,91,27,98,29,105,31,112,33,119,35,126,37,133,39,140,41,147,43,154, %U A195159 45,161,47,168,49,175,51,182,53,189,55,196,57,203,59,210,61 %N A195159 Multiples of 7 and odd numbers interleaved. %C A195159 This is 7*n if n is even, n if n is odd, if n>=0. %C A195159 Partial sums give the generalized 11-gonal (or hendecagonal) numbers A195160. %C A195159 a(n) is also the length of the n-th line segment of the rectangular spiral whose vertices are the generalized 11-gonal numbers. - _Omar E. Pol_, Jul 27 2018 %H A195159 Vincenzo Librandi, <a href="/A195159/b195159.txt">Table of n, a(n) for n = 0..10000</a> %H A195159 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,0,-1). %F A195159 a(2n) = 7n, a(2n+1) = 2n+1. [corrected by _Omar E. Pol_, Jul 26 2018] %F A195159 From _Bruno Berselli_, Sep 14 2011: (Start) %F A195159 G.f.: x*(1+7*x+x^2)/((1-x)^2*(1+x)^2). %F A195159 a(n) = (5*(-1)^n+9)*n/4. %F A195159 a(n) + a(n-1) = A056020(n). (End) %F A195159 Multiplicative with a(2^e) = 7*2^(e-1), a(p^e) = p^e for odd prime p. - _Andrew Howroyd_, Jul 23 2018 %F A195159 Dirichlet g.f.: zeta(s-1) * (1 + 5/2^s). - _Amiram Eldar_, Oct 25 2023 %t A195159 Table[If[EvenQ[n], 7(n/2), n], {n, 0, 61}] (* _Alonso del Arte_, Sep 14 2011 *) %t A195159 With[{nn=40},Riffle[7*Range[0,nn],Range[1,2nn,2]]] (* _Harvey P. Dale_, Aug 01 2019 *) %o A195159 (Magma) &cat[[7*n, 2*n+1]: n in [0..40]]; // _Vincenzo Librandi_, Sep 27 2011 %o A195159 (PARI) a(n)=(5*(-1)^n+9)*n/4 \\ _Charles R Greathouse IV_, Oct 07 2015 %Y A195159 Cf. A008589 and A005408 interleaved. %Y A195159 Column k=7 of A195151. %Y A195159 Cf. Sequences whose partial sums give the generalized n-gonal numbers, if n>=5: A026741, A001477, zero together with A080512, A022998, A195140, zero together with A165998, this sequence, A195161. %Y A195159 Cf. A056020, A195160. %K A195159 nonn,easy,mult %O A195159 0,3 %A A195159 _Omar E. Pol_, Sep 10 2011