cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195186 Number of palindromic double occurrence words of length 2n.

Original entry on oeis.org

1, 2, 6, 20, 72, 290, 1198, 5452, 25176, 125874, 637926, 3448708, 18919048, 109412210, 642798510, 3945170012, 24614491704, 159328958690, 1048645656646, 7122719571700, 49185991168968, 349097516604738, 2518145666958126, 18609525157571692, 139704193446510616
Offset: 1

Views

Author

N. J. A. Sloane, Sep 10 2011

Keywords

Programs

  • Maple
    A047974 := proc(n) option remember; if n= 1 then 1; elif n=2 then 3; else procname(n-1)+2*(n-1)*procname(n-2) ; end if; end proc:
    A195186 := proc(n) if n <= 1 then 1; else A047974(n)-add(procname(n-2*k)*doublefactorial(2*k-1),k=1..floor(n/2)) ; end if; end proc:
    seq(A195186(n),n=1..20) ; # R. J. Mathar, Sep 12 2011
  • Mathematica
    b[n_] := Sum[Binomial[k, n - k]*(n!/k!), {k, 0, n}];
    a[1] = 1; a[n_] := b[n] - Sum[a[n - 2*k]*(2*k - 1)!!, {k, 1, n/2}];
    Array[a, 20] (* Jean-François Alcover, Nov 29 2017, after R. J. Mathar *)

Formula

Theorem 3.3 of Burns-Muche gives a recurrence.