A195186 Number of palindromic double occurrence words of length 2n.
1, 2, 6, 20, 72, 290, 1198, 5452, 25176, 125874, 637926, 3448708, 18919048, 109412210, 642798510, 3945170012, 24614491704, 159328958690, 1048645656646, 7122719571700, 49185991168968, 349097516604738, 2518145666958126, 18609525157571692, 139704193446510616
Offset: 1
Keywords
Links
- Jonathan Burns and Tilahun Muche, Counting Irreducible Double Occurrence Words, arXiv preprint arXiv:1105.2926 [math.CO], 2011.
Programs
-
Maple
A047974 := proc(n) option remember; if n= 1 then 1; elif n=2 then 3; else procname(n-1)+2*(n-1)*procname(n-2) ; end if; end proc: A195186 := proc(n) if n <= 1 then 1; else A047974(n)-add(procname(n-2*k)*doublefactorial(2*k-1),k=1..floor(n/2)) ; end if; end proc: seq(A195186(n),n=1..20) ; # R. J. Mathar, Sep 12 2011
-
Mathematica
b[n_] := Sum[Binomial[k, n - k]*(n!/k!), {k, 0, n}]; a[1] = 1; a[n_] := b[n] - Sum[a[n - 2*k]*(2*k - 1)!!, {k, 1, n/2}]; Array[a, 20] (* Jean-François Alcover, Nov 29 2017, after R. J. Mathar *)
Formula
Theorem 3.3 of Burns-Muche gives a recurrence.