This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195199 #27 Feb 28 2022 10:22:54 %S A195199 4,12,12,24,20,36,28,48,36,60,44,120,52,84,60,96,68,144,76,120,84,132, %T A195199 92,240,100,156,108,168,116,180,124,192,132,204,140,360,148,228,156, %U A195199 240,164,252,172,264,180,276,188,480,196,300,204,312,212,432,220,336 %N A195199 Smallest multiple of n with more than twice as many divisors as n. %F A195199 a(n) = Min_{A000005(k*n) > 2*A000005(n)} k*n. %e A195199 a(4) must have more than 6 divisors because 4 has 3 divisors and 3*2=6. Therefore, it cannot be 16 because 16 has only 5 divisors. %p A195199 A195199 := proc(n) %p A195199 for k from 2 do %p A195199 if numtheory[tau](k*n) > 2*numtheory[tau](n) then %p A195199 return k*n ; %p A195199 end if; %p A195199 end do: %p A195199 end proc: # _R. J. Mathar_, Oct 21 2011 %t A195199 Table[d = DivisorSigma[0, n]; m = 1; While[DivisorSigma[0, m*n] <= 2*d, m++]; m*n, {n, 100}] (* _T. D. Noe_, Oct 21 2011 *) %o A195199 (PARI) a(n) = my(m=n, d=numdiv(n)); while(numdiv(m)<=2*d, m+=n); m; \\ _Michel Marcus_, Jan 08 2022 %o A195199 (Python) %o A195199 from sympy import divisor_count %o A195199 def a(n): %o A195199 dtarget, m = 2*divisor_count(n), 2*n %o A195199 while divisor_count(m) <= dtarget: m += n %o A195199 return m %o A195199 print([a(n) for n in range(1, 57)]) # _Michael S. Branicky_, Jan 08 2022 %o A195199 (Python) %o A195199 from math import prod %o A195199 from itertools import count %o A195199 from collections import Counter %o A195199 from sympy import factorint %o A195199 def A195199(n): %o A195199 f = Counter(factorint(n)) %o A195199 d = prod(e+1 for e in f.values()) %o A195199 for m in count(2): %o A195199 if prod(e+1 for e in (f+Counter(factorint(m))).values()) > 2*d: %o A195199 return m*n # _Chai Wah Wu_, Feb 28 2022 %Y A195199 Cf. A000005. %K A195199 nonn %O A195199 1,1 %A A195199 _J. Lowell_, Oct 12 2011