This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195203 #30 Jun 16 2018 23:27:20 %S A195203 1,0,2,6,48,440,5310,77952,1356152,27284112,623393370,15946253840, %T A195203 451464791052,14014830400584,473330219980982,17278004243854200, %U A195203 677844684489863760,28441920741699231392,1270962028978738313778,60259311813834246030048,3021271708308614076699380 %N A195203 E.g.f.: Sum_{n>=0} x*(n + x)^(n-1) * x^n/n!. %C A195203 a(n) is the total number of leaves in all labeled forests with n nodes. Cf. A055541. - _Geoffrey Critzer_, Aug 22 2012 %H A195203 Alois P. Heinz, <a href="/A195203/b195203.txt">Table of n, a(n) for n = 0..150</a> %F A195203 E.g.f.: exp(-x*LambertW(-x)). %F A195203 E.g.f.: ( LambertW(-x)/(-x) )^x. %F A195203 E.g.f.: ( Sum_{n>=0} (n + 1)^(n-1) * x^n/n! )^x. %F A195203 E.g.f.: ( Sum_{n>=0} (n + x)^n * x^n/n! ) * (-x)/LambertW(-x). - _Paul D. Hanna_, Jun 16 2018 %F A195203 E.g.f.: LambertW(-x) / ( -x * Sum_{n>=0} (n - x)^n * x^n/n! ). - _Paul D. Hanna_, Jun 16 2018 %F A195203 a(n) = Sum_{k=0..floor(n/2)} C(n,k)*C(n-k-1,k-1)*(n-k)^(n-2*k)*k!. - _Alois P. Heinz_, Aug 22 2012 %F A195203 a(n) ~ exp(exp(-1)-1)*n^(n-1). - _Vaclav Kotesovec_, Jun 26 2013 %e A195203 E.g.f.: A(x) = 1 + 2*x^2/2! + 6*x^3/3! + 48*x^4/4! + 440*x^5/5! + ... %e A195203 where %e A195203 A(x) = 1 + x*(1+x)^0*x^1/1! + x*(2+x)*x^2/2! + x*(3+x)^2*x^3/3! + x*(4+x)^3*x^4/4! + ... %e A195203 Also, A(x) = W(x)^x where W(x) = LambertW(-x)/(-x) and begins: %e A195203 W(x) = 1 + x + 3*x^2/2! + 4^2*x^3/3! + 5^3*x^4/4! + 6^4*x^5/5! + ... %p A195203 a:= n-> add(binomial(n, k)*binomial(n-k-1, k-1)*(n-k)^(n-2*k) *k!, k=0..n/2): %p A195203 seq(a(n), n=0..30); # _Alois P. Heinz_, Aug 22 2012 %t A195203 nn = 20; t = Sum[n^(n - 1) x^n/n!, {n, 1, nn}]; %t A195203 Range[0, nn]! CoefficientList[Series[Exp[x t] , {x, 0, nn}], x] (* _Geoffrey Critzer_, Aug 22 2012 *) %o A195203 (PARI) {a(n)=local(A=sum(k=0,n,x*(k+x)^(k-1)*x^k/k!)+x*O(x^n));n!*polcoeff(A,n)} %o A195203 (PARI) {a(n)=local(W=sum(k=0,n,(k+1)^(k-1)*x^k/k!)+x*O(x^n));n!*polcoeff(W^x,n)} %o A195203 (PARI) {a(n)=local(W=sum(k=0,n,(k+1)^(k-1)*x^k/k!)+x*O(x^n));n!*polcoeff(exp(x^2*W),n)} %K A195203 nonn %O A195203 0,3 %A A195203 _Paul D. Hanna_, Sep 13 2011