This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195206 #42 Aug 18 2018 08:35:55 %S A195206 1,5,49,502,4996,49972,499986,5000046,50000675,500001223,4999997671, %T A195206 50000001587,500000050701,5000000008159,50000000316237, %U A195206 500000000977421,4999999994637728,49999999977479348,499999999944465105,4999999999725703450,49999999999090850760 %N A195206 Number of 1s in the first 10^n entries of the Kolakoski sequence, A000002. %H A195206 J. Nilsson, <a href="http://arxiv.org/abs/1110.4228">A Space Efficient Algorithm for the Calculation of the Digit Distribution in the Kolakoski Sequence</a>, arXiv preprint arXiv:1110.4228 [math.CO], 2011, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Nilsson/nilsson5.html">J. Int. Seq. 15 (2012) #12.6.7</a> %H A195206 J. Nilsson, <a href="http://dx.doi.org/10.12693/APhysPolA.126.549">Letter Frequencies in the Kolakoski Sequence</a>, Acta Physica Polonica A, 126 (2014), 549-552. %H A195206 Michael Rao, <a href="https://www.arthy.org/kola/kola.php">Trucs et bidules sur la séquence de Kolakoski</a>, 2012, in French. %H A195206 Ed Wynn, <a href="/A195206/a195206.c.txt">C program to calculate A195206 (and A195211 etc)</a> %e A195206 The first entries of the Kolakoski sequence, A000002, are 1221121221... From this we see that a(0)=1, since the first letter is 1, and a(1)=5 since among the first 10 letters 5 of them are 1s. %Y A195206 Cf. A000002. %K A195206 nonn %O A195206 0,2 %A A195206 _Johan Nilsson_, Sep 13 2011 %E A195206 a(14) from _Ed Wynn_, Jun 24 2014 %E A195206 a(15)-a(19) from _Richard P. Brent_, Jul 02 2017 %E A195206 a(20) from _Richard P. Brent_, Mar 01 2018