cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A195232 T(n,k)is the number of lower triangles of an n X n 0..k array with each element differing from all of its diagonal, vertical, antidiagonal and horizontal neighbors by one or less.

Original entry on oeis.org

2, 3, 8, 4, 15, 64, 5, 22, 155, 1024, 6, 29, 246, 3151, 32768, 7, 36, 337, 5428, 127785, 2097152, 8, 43, 428, 7705, 237818, 10322065, 268435456, 9, 50, 519, 9982, 348849, 20729610, 1663418313, 68719476736, 10, 57, 610, 12259, 459880, 31374671
Offset: 1

Views

Author

R. H. Hardin, Sep 13 2011

Keywords

Comments

Table starts
...........2............3.............4.............5.............6
...........8...........15............22............29............36
..........64..........155...........246...........337...........428
........1024.........3151..........5428..........7705..........9982
.......32768.......127785........237818........348849........459880
.....2097152.....10322065......20729610......31374671......42029278
...268435456...1663418313....3601738548....5618308863....7640055854
.68719476736.535153390177.1249159521262.2006626824777.2767861764930

Examples

			Some solutions for n=4 k=4
..3........2........0........2........3........0........0........3
..2.3......2.3......0.0......1.1......3.3......0.0......1.0......2.3
..3.2.2....2.2.2....1.0.0....2.1.1....2.3.3....0.1.0....0.0.1....3.3.4
..2.3.2.3..1.2.3.3..0.1.1.0..1.1.2.1..3.3.3.2..0.0.0.0..1.1.1.0..3.4.4.3
		

Formula

Empirical for rows:
T(1,k) = 1*k + 1
T(2,k) = 7*k + 1
T(3,k) = 91*k - 27
T(4,k) = 2277*k - 1403 for k>1
T(5,k) = 111031*k - 95275 for k>2
T(6,k) = 10654607*k - 11243757 for k>3
T(7,k) = 2021888119*k - 2469384741 for k>4
Generalizing, T(n,k) = A195213(n) + const(n) for k>n-3
Since elements of a solution differ by no more than n, T(n,k)-T(n,k-1) is constant for k >= n. This confirms the empirical formula: T(n,k) is a polynomial of degree 1 in k for k > n-3. - Robert Israel, Nov 21 2017
Showing 1-1 of 1 results.