cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A195248 T(n,k) = Number of lower triangles of an n X n 0..k array with each element differing from all of its diagonal, vertical, antidiagonal and horizontal neighbors by two or less.

Original entry on oeis.org

2, 3, 8, 4, 27, 64, 5, 46, 729, 1024, 6, 65, 1682, 59049, 32768, 7, 84, 2729, 190514, 14348907, 2097152, 8, 103, 3776, 357847, 67379894, 10460353203, 268435456, 9, 122, 4823, 533142, 147824001, 74236765958, 22876792454961, 68719476736, 10, 141
Offset: 1

Views

Author

R. H. Hardin, Sep 13 2011

Keywords

Comments

Table starts
.......2...........3...........4............5............6............7
.......8..........27..........46...........65...........84..........103
......64.........729........1682.........2729.........3776.........4823
....1024.......59049......190514.......357847.......533142.......709613
...32768....14348907....67379894....147824001....237368212....329060365
.2097152.10460353203.74236765958.192172956591.333437946202.481573562101

Examples

			Some solutions for n=6, k=5
..4............1............5............0............0............1
..5.3..........1.3..........5.4..........1.2..........0.2..........0.0
..5.4.5........1.2.4........3.4.4........1.3.1........1.0.0........2.1.2
..4.3.4.4......3.3.3.3......5.3.5.4......2.1.1.2......0.1.1.0......0.0.2.2
..5.4.2.2.4....4.5.4.5.5....4.3.5.4.3....2.3.1.3.1....2.0.2.2.0....2.0.1.2.4
..4.3.2.2.4.4..3.5.3.3.5.5..3.5.5.3.3.1..4.2.2.1.1.0..0.2.0.2.0.1..1.1.0.2.4.4
		

Crossrefs

Column 1 is A006125(n+1).
Column 2 is A047656(n+1).
Cf. A195214.

Formula

Empirical for rows:
T(1,k) = 1*k + 1,
T(2,k) = 19*k - 11
T(3,k) = 1047*k - 1459 for k>2,
T(4,k) = 176471*k - 349213 for k>4,
T(5,k) = 92031109*k - 223153377 for k>6,
T(6,k) = 149824887097*k - 417651128341 for k>8,
T(7,k) = 764465228592699*k - 2364216638005277 for k>10,
Generalizing, T(n,k) = A195214(n)*k + const(n) for k>2*n-4.
Showing 1-1 of 1 results.