A195220 T(n,k) is the number of lower triangles of an n X n integer array with each element differing from all of its diagonal, vertical, antidiagonal and horizontal neighbors by k or less and triangles differing by a constant counted only once.
1, 1, 7, 1, 19, 91, 1, 37, 1047, 2277, 1, 61, 5453, 176471, 111031, 1, 91, 18903, 3395245, 92031109, 10654607, 1, 127, 51205, 31640829, 9032683465, 149824887097, 2021888119, 1, 169, 117585, 189677411, 289301569283, 103565705397639
Offset: 1
Examples
Some solutions for n=6, k=5: 0 0 0 0 4 4 2 2 2 1 4 5 6 7 7 7 6 5 -3 -2 1 5 8 7 10 8 12 7 4 7 6 1 -6 -1 -4 -2 8 9 5 7 10 12 11 12 9 2 3 5 1 0 -1 -1 -1 -1 -2 5 5 8 9 8 7 7 8 12 9 5 1 3 5 2 4 5 -6 -3 0 0 1 -3 0 3 8 8 10 6
Links
- R. H. Hardin, Table of n, a(n) for n = 1..86
- Wikipedia, Ehrhart polynomial
Crossrefs
Row 2 is A003215.
Formula
Empirical for rows:
T(1,k) = 1
T(2,k) = 3*k^2 + 3*k + 1
T(3,k) = (301/30)*k^5 + (301/12)*k^4 + (88/3)*k^3 + (227/12)*k^2 + (199/30)*k + 1
T(4,k) = (1207573/30240)*k^9 + (1207573/6720)*k^8 + (1000157/2520)*k^7 + (264247/480)*k^6 + (754417/1440)*k^5 + (338651/960)*k^4 + (2533393/15120)*k^3 + (90763/1680)*k^2 + (901/84)*k + 1
T(5,k) = (3508493543/18345600)*k^14 + (3508493543/2620800)*k^13 + (1116775769537/239500800)*k^12 + (422094048023/39916800)*k^11 + (377328209183/21772800)*k^10 + (78475421219/3628800)*k^9 + (1073748492569/50803200)*k^8 + (19848770813/1209600)*k^7 + (221251862417/21772800)*k^6 + (18121075223/3628800)*k^5 + (10435002133/5443200)*k^4 + (505904317/907200)*k^3 + (8793472607/75675600)*k^2 + (1397863/90090)*k + 1
Comments