A195235 Number of lower triangles of a 5 X 5 0..n array with each element differing from all of its diagonal, vertical, antidiagonal and horizontal neighbors by one or less.
32768, 127785, 237818, 348849, 459880, 570911, 681942, 792973, 904004, 1015035, 1126066, 1237097, 1348128, 1459159, 1570190, 1681221, 1792252, 1903283, 2014314, 2125345, 2236376, 2347407, 2458438, 2569469, 2680500, 2791531, 2902562, 3013593
Offset: 1
Keywords
Examples
Some solutions for n=4 with 0 and 4: ..0..........4..........4..........0..........4..........0..........0 ..1.1........3.3........3.3........1.1........4.3........1.1........1.1 ..2.2.2......2.2.2......2.2.2......1.2.2......3.3.2......2.2.2......2.2.2 ..3.2.3.3....1.2.2.1....1.2.1.1....1.2.3.3....2.3.2.1....3.3.3.3....3.3.2.3 ..2.3.2.3.4..1.2.2.1.0..2.1.1.0.1..2.2.3.3.4..3.2.2.1.0..2.3.4.4.4..4.3.3.3.4
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A195232.
Formula
Empirical: a(n) = 111031*n - 95275 for n>2.
Conjectures from Colin Barker, May 06 2018: (Start)
G.f.: x*(32768 + 62249*x + 15016*x^2 + 998*x^3) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>4.
(End)
Comments