A195249 Number of lower triangles of a 3 X 3 0..n array with each element differing from all of its diagonal, vertical, antidiagonal and horizontal neighbors by two or less.
64, 729, 1682, 2729, 3776, 4823, 5870, 6917, 7964, 9011, 10058, 11105, 12152, 13199, 14246, 15293, 16340, 17387, 18434, 19481, 20528, 21575, 22622, 23669, 24716, 25763, 26810, 27857, 28904, 29951, 30998, 32045, 33092, 34139, 35186, 36233, 37280, 38327
Offset: 1
Keywords
Examples
Some solutions for n=5: ..2......1......0......0......4......5......1......1......5......3 ..3.4....2.3....2.0....0.2....5.4....3.5....1.3....2.3....3.3....2.2 ..4.4.4..2.1.2..1.1.1..1.1.3..4.4.5..5.5.3..2.1.3..4.3.4..2.3.3..0.0.2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A195248.
Formula
Empirical: a(n) = 1047*n - 1459 for n>2.
Conjectures from Colin Barker, May 06 2018: (Start)
G.f.: x*(64 + 601*x + 288*x^2 + 94*x^3) / (1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) for n>4.
(End)
Comments