This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195256 #7 Oct 10 2020 08:25:34 %S A195256 1,4,20,104,568,3296,20576,139840,1044416,8617472,78605824,790252544, %T A195256 8709555200,104581771264,1359831461888,19038714208256,285585008091136, %U A195256 4569377309327360,77679482978041856,1398230968482660352,26566389500682174464 %N A195256 O.g.f.: Sum_{n>=0} 4*(n+4)^(n-1)*x^n/(1+n*x)^n. %C A195256 Compare the g.f. to: W(x)^4 = Sum_{n>=0} 4*(n+4)^(n-1)*x^n/n! where W(x) = LambertW(-x)/(-x). %C A195256 Compare to a g.f. of A000522: Sum_{n>=0} (n+1)^(n-1)*x^n/(1+n*x)^n, which generates the total number of arrangements of a set with n elements. %F A195256 a(n) = (n-1)!*Sum_{k=1..n} 4^k/(k-1)! for n>0, with a(0)=1. %F A195256 a(n) ~ 4*exp(4) * (n-1)!. - _Vaclav Kotesovec_, Oct 10 2020 %e A195256 O.g.f.: A(x) = 1 + 4*x + 20*x^2 + 104*x^3 + 568*x^4 + 3296*x^5 +... %e A195256 where %e A195256 A(x) = 1 + 4*x/(1+x) + 4*6*x^2/(1+2*x)^2 + 4*7^2*x^3/(1+3*x)^3 + 4*8^3*x^4/(1+4*x)^4 +... %o A195256 (PARI) {a(n)=polcoeff(sum(m=0,n,4*(m+4)^(m-1)*x^m/(1+m*x+x*O(x^n))^m),n)} %o A195256 (PARI) {a(n)=if(n==0,1,(n-1)!*sum(k=1,n,4^k/(k-1)!))} %Y A195256 Cf. A000522, A195254, A195255, A195257. %K A195256 nonn %O A195256 0,2 %A A195256 _Paul D. Hanna_, Sep 13 2011